

SMART ROTOR BLADES & ROTOR CONTROL

dr.ir. H.E.N. Bersee

Design and Production of Composite Structures Faculty of Aerospace Engineering Delft University of Technology - The Netherlands

Introduction — Presentation Outline

Introduction

- → What is a "Smart Rotor"
- ✓ UpWind work package 1B3

Aerodynamic devices

- ≺ Concepts
- → Ongoing work

Adaptive aerofoils / Integrated Structures

- ≺ Concepts
- → Ongoing work

Sensors and control

Conclusions

Introduction — Smart Rotor Blades

Work package 1B3: Smart Rotor Blade for Wind Turbines Goal:

Controlling the blade's loading through active control of the aerodynamics with spanwise distributed devices

Why?

With increasing rotor size for (future) off-shore turbines will cause more fatigue issues:

- → Mass effects
- ✓ Increasing fluctuations in flow field

<u>Logical solution:</u> use the aerodynamics to control these fluctuations

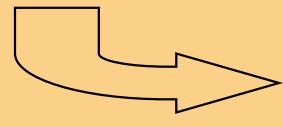
Introduction — Smart Rotor Blades

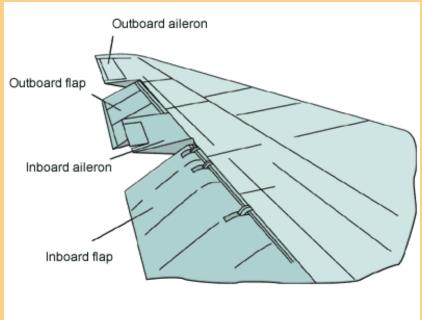
In order to be "Smart" one must sense, compute a reaction and react. For this accurate knowledge of the system (aerodynamics and structure) is needed.

So the issues/research areas are:

- ≺ Aerodynamics
- ≺ Structural integration/Actuators
- ≺ Sensing
- → Control

Moreover, a integrated solution is wanted.




Introduction — Smart Rotor Blades

In other words

We want this control capability ...

...without compromising the robustness of current blade technology

Introduction — UpWind WP 1B3

Work package 1B3: Smart Rotor Blade for Wind Turbines

Partners:

- → Risø National Laboratory (DK)
- ✓ Energy research Centre of the Netherlands -ECN (NL)
- ✓ University of Stuttgart (D)
- ≺ LM Glasfiber A.S. (DK)
- → Fundación Robotiker (E)
- ✓ VTT Technical Research Centre of Finland (SF)
- ✓ Instytut Podstawowych Problemow Techniki -PAN (PL)
- ✓ Institute of Physics, Academy of Sciences of the Czech Republic (CZ)

Aerodynamics

Requirements

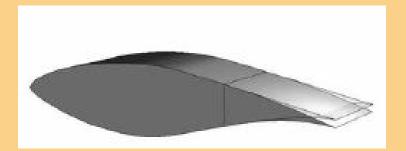
- ≺ Significant change in C_L
- Little aerodynamic delay (related to control)
- ≺ Small power consumption

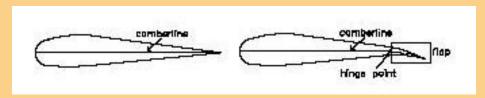
 (related to actuator possibilities)

Aerodynamics

Possibilities

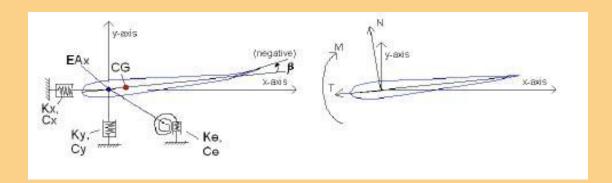
Options often inspired by helicopter rotor research:

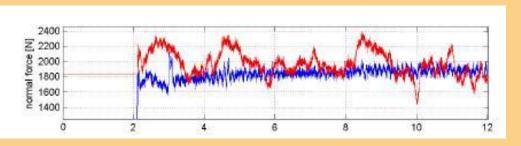

- → Bend-twist coupling
- ✓ Individual pitch control (full and partial span)
- ≺ Trailing edge flaps
- Camber control
- Active blade twist
- → Micro tabs
- → Boundary layer control


 Many option are passive, too slow or require extremely large actuator power. Feasible candidates are...

Trailing edge flaps and camber control

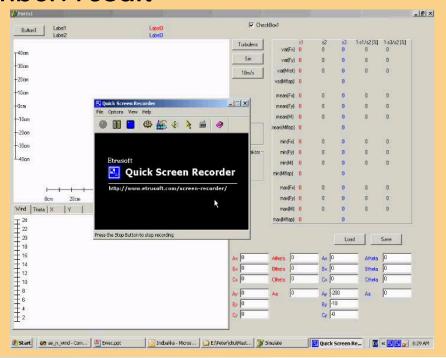
At Risø: Model and experiments into aerofoils with (partially) deformable camber:


For wind turbines aft part: continuous deformable trailing edge flaps (no hinges)

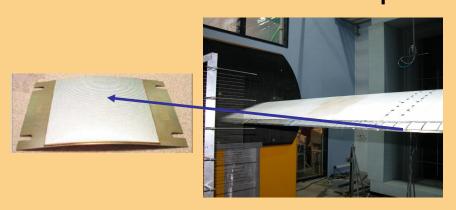


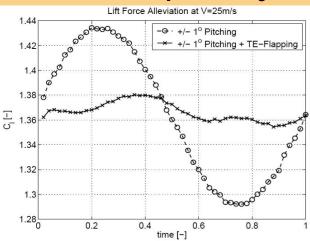
Trailing edge flaps and camber control

At Risø: Model and experiments into aerofoils with (partially) deformable camber: structural model


Result: potential reduction in bending moment

Trailing edge flaps and camber control
At Risø: Model and experiments into aerofoils with (partially)
deformable camber: result

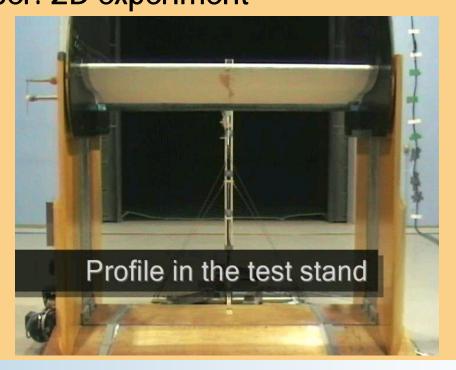




Trailing edge flaps and camber control

At Risø: Model and experiments into aerofoils with (partially)

deformable camber: 2D experiment


- 2m blade section, 0.66m chord, 36 piezoelectric actuators as flaps (10% chord length).
- ✓ Pitch +/- 1 deg. with and without (opposite) flap deflection
- ✓ Reduction in change of lift 82%

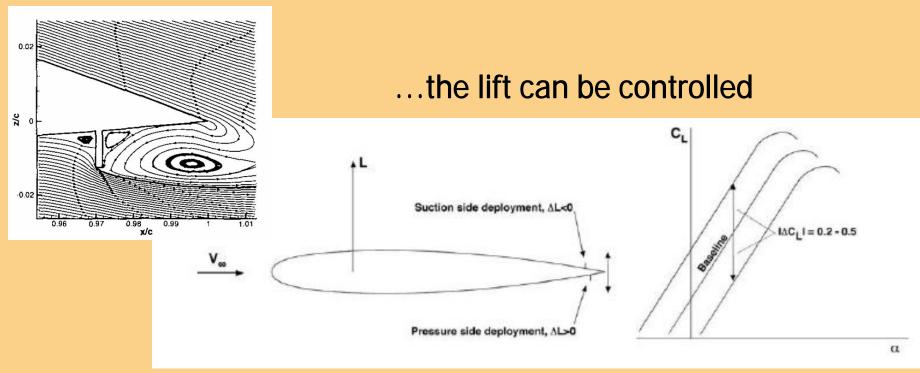
Trailing edge flaps and camber control

At Risø: Model and experiments into aerofoils with (partially) deformable camber: 2D experiment

Aerodynamics -UpWind coproject

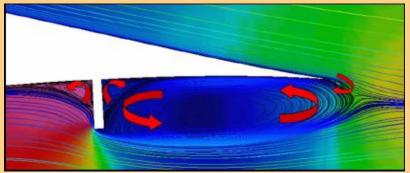
Trailing edge flaps and camber control

At TU Delft: Experiments including structural dynamics and control


- → Blade with tailored dynamics
- ≺ Fast pitch excitation to simulate the scaled dynamics of a full scale blade
- Real time feedback controller designed with system identification
- → PZT based flexible flap
- Experiments are on-going, results are possitive and being processed

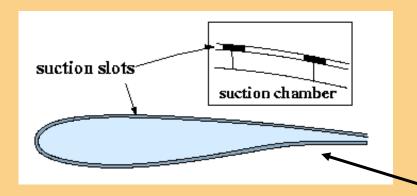
Micro Tabs:

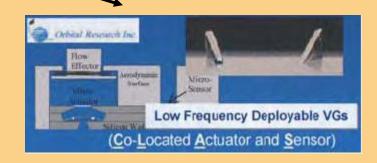
By disturbing the boundary layer near the trailing edge...



Micro Tabs:

- ≺ Small (1-2%c), simple, lightweight, inexpensive
- ≺ Fast response, easily controllable, small required movement
- Great relative aerodynamic performance: it effectively changes sectional camber and modifies trailing edge flow (the Kutta condition)





Boundary layer control

Blade surface y
Diaphragm

- Mainly used to reduce flow separation
- Can achieve "virtual effective camber" control
- Suction / Blowing
- ≺ Synthetic Jets
- Active Vortex Generators

- ≺ Simple design
- Low maintenance requirements | Adaptive Materials

Integrated solution:

Adaptive Structure: Embedding or externally applying materials that deform under a non-mechanical stimulus.

Advantages:

- ≺ Lower weight
- ✓ Lower maintenance

Often mentioned adaptive materials:

- → Piezo electric materials.
- ≺ lonic polymers.
- ✓ Electrostrictive materials.
- ✓ Magnetostrictive materials.
- ≺ Shape memory alloys.
- ≺ Shape memory polymers.
- ✓ Magneto-rheological fluids.

But there are force, deformation and bandwidth requirements

Force: Sufficient force must be exerted to deform the structure and to withstand aerodynamic loads

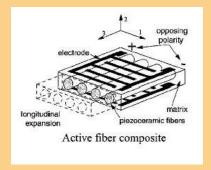
Deformation: The force must be applied over a certain range.

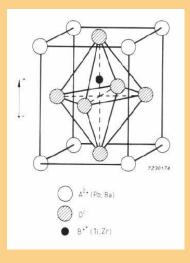
Bandwidth: The speed of the actuator must be high enough (at least 1-3Hz for the Smart Rotor).

Suitable candidates:

Piezo electrics (However, Iow strains: ~10-4)

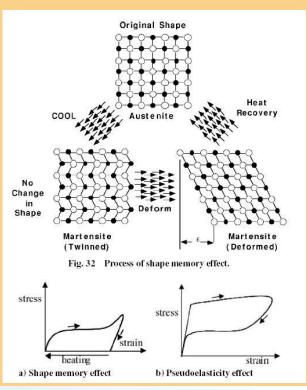
SMAs (However, low bandwidth: depends on cooling, hard to control)


Piezo electrics: crystals that deform under an electric field


Often supplied in plates: high field through the thickness

Many ways of increasing deformation/deflection:

- ✓ In benders
- Using "3-3-effect" (stacks, active fiber composites)
- Mechanical amplification



SMAs: Temperature triggered phase transition causes recovery of certain amount of strain

- ✓ Deforming at low T: material goes from twinned to detwinned martensite
- ≺ Heating : materials transforms to austenite and recovers its original shape
- Cooling: material returns to twinned martensite (unless restrained) without shape change
- ≺ At high T: recovery is constantly "on": pseudo elasticity

Structural integration

SMAs: Temperature triggered phase transition causes recovery of certain amount of strain

Bandwidth issues:

- Cooling strategy
- Use of the R-phase (low strains, but high rates because of higher and smaller temperature band)

Control:

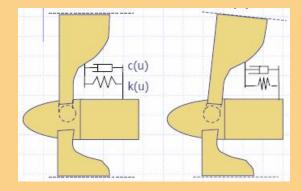
- Models of Academy of Sciences of the Czech Republic
- Work on application and embedding

SMAs: Temperature triggered phase transition causes recovery of certain amount of strain

Example: SMA wire actuated trailing edge at VTT

Sensors and Control—state of the art

Sensoring: Robotiker


Possibilities for feedback: Measure for instance...

- ✓ incoming flow field,
- ≺ tip deflection / acceleration,

Control: IPPT

Threshold-based root bending alleviation through hinged blade root

Feedback control on aerodynamic devices & actuator concepts

Conclusions


- We're aiming for an integrated solution where minimal actuation power (small devices) will result in a maximal effect (ΔCL)
- ≺ Aerodynamic devices: most effective near trailing edge
- ≺ Actuators: SMA or piezo based, either embedded (deformable surface), or as external actuator.
- Current and future research into advanced aerodynamic and structural modeling, as well as control

Conclusions

So in the future...


Questions?

Conclusions

So in the future...

Questions?

