UpWind 1

Aerodynamics and Aeroelastics, WP 2

Flemming Rasmussen
Aeroelastic Design

Wind Energy Department

Risø DTU

WP2 Aero-dynamics and Aero-elastics OBJECTIVES

Overall: To develop an aeroelastic design basis for large multi MW turbines.

Specific:

- Development of nonlinear structural dynamic models (modeling on the micromechanical scale is input from WP3).
- 2. Advanced aerodynamic models covering full 3D CFD rotor models, free wake models and improved BEM type models. (The wake description is a prerequisite for the wake modeling in WP8).
- 3. Models for aerodynamic control features and devices. (This represents the theoretical background for the smart rotor blades development in WP 1.B.3)
- 4. Models for analysis of aeroelastic stability and total damping including hydroelastic interaction
- 5. Development of models for computation of aerodynamic noise.

WP 2.1 Structural dynamics, large deflections & non-linear effects

Approach

- Identification of important non-linearities in large wind turbines
- ✓ Implementation of non-linear beam models in aero-elastic tools

Example: Tip twist deformation, IEA comparison, RWT, 8 m/s

WP 2.1 Non-linear effects

Additions to the baseline, 1st-order, model

Formulation of dynamic equations in the deformed state (same structural couplings as in baseline but 2nd-order kinematics and dynamics)

(2nd order beam-0)

- Tension torsion coupling terms (2nd order beam-1)
- Bending torsion coupling terms(2nd order beam-2)
- Pre-twist torsion coupling term (2nd order beam-3)

Wind speed: 11m/s

WP 2.1 Non-linear effects

Linear vs. non linear beam model analysis, NTM at 11.4 m/s

WP 2.1 Structural dynamics, large deflections & non-linear effects

Summary

- Significant contributions obtained by
 - Formulating the dynamic equations in the deformed state
 - Including bending torsion coupling terms

WP2.2 Advanced aerodynamic models

Objectives

 ≺ to identify the limitations in the engineering aerodynamic modeling in BEM type codes

Approach

- ✓ inter comparison of results of models of different complexity applied on MW rotors, RWT- 5MW
- ✓ Shear and turbulence wind inflow for CFD-models.

Simulation cases

- ✓ uniform inflow on RWT turbine (stiff model)
- unsteady inflow (turbulent)- not yet performed

WP2.2 Blade forces normal and tangential

Simulations with various codes at 8 m/s

uniform inflow

normal

tangential

Wind speed with height, night-day, Høvsøre

Measured inflow angle on the NM80 at Tjæreborg during a period with strong shear and low turbulence

Wake pattern, CFD with strong inflow shear

WP2.2 Blade normal force

8 m/s - strong inflow shear - exponent 0.55, $U(z) = U_{hub} \left(\frac{z}{z_{hub}}\right)^{0.55}$

blade up

blade down

WP2.2 Blade normal force

8 m/s -- strong inflow shear - exponent 0.55

blade 90 deg.

blade 270 deg.

WP2.2 Advanced aerodynamic models

Summary

- uniform inflow and low wind speed a good correlation is found between all models
- at high wind speed and uniform inflow considerable deviations are seen on the load distribution along the blade
- ✓ for the strong wind shear case, considerable deviations between the models are seen

WP 2.3 Advanced control features and aerodynamic devices

Approach:

- Develope detailed models for structural and aerodynamic analysis for a few promising flow control concepts (in close corporation with WP 1A5).
- Deformable camberline.

Dynamic Stall model: Main input: $C_L^{st}(\alpha, \beta)$

Dynamic Stall: Harmonic Alpha and Beta

Blue: Alpha and Beta in phase

Black: No Beta

Red: In counter-phase (180° shift)

WP 2.4: Aeroelastic stability and total damping including hydrodynamics

Approach:

 Aerodynamic damping and aeroelastic stability of the RWT 5
 MW turbine

•Blade structural damping model

CFD-structure coupling

WP 2.4: Aerodynamic damping of blade modes for RWT 5 MW

WP 2.4: Aeroelastic stability and total damping including hydrodynamics.

WP 2.5 Computation of aerodynamic noise—coupled CFD-CAA models

Approach:

- Boundary-layer experiments to validate and select appropriate turbulence models.
- Improve the capability of existing stochastic turbulence models for CFD-CAA coupling.
- Development of CAA schemes for computation of aeroacoustic noise generation as function of detailed turbulence data from CFD computation on a 2D airfoil.

Test Cases: VTE Model Developed at LWT (SIROCCO Project)

- goal: variation of boundary-layer parameters at trailing-edge
- requires strong contour change over major part of chord length
- three variations: VTE_lin, VTE_kav (and VTE_vex)

Wind tunnel model with adjustable shape

Results: VTE_kav, CI=0.7, BL Parameters

Results: VTE_kav, CI=0.7, Noise Spectra

