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WP2 Aero-dynamics and Aero-elastics
OBJECTIVES

Overall: To develop an aeroelastic design basis for large multi MW turbines.

Specific:
1. Development of nonlinear structural dynamic models (modeling on
the micromechanical scale is input from WP3).

2. Advanced aerodynamic models covering full 3D CFD rotor models,
free wake models and improved BEM type models. (The wake
description is a prerequisite for the wake modeling in WP8).

3. Models for aerodynamic control features and devices. (This
represents the theoretical background for the smart rotor blades
development in WP 1.B.3)

4. Models for analysis of aeroelastic stability and total damping
including hydroelastic interaction

5. Development of models for computation of aerodynamic noise.
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WP 2.1 Structural dynamics, large deflections
& non-linear effects

Approach
|dentification of important non-linearities in large wind turbines
Implementation of non-linear beam models in aero-elastic tools

Example: Tip twist deformation,
IEA comparison, RWT, 8 m/s Tip twist
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WP 2.1 Non-linear effects

Additions to the baseline, 1st-order, model

Formulation of dynamic equations in the deformed state (same structural
couplings as in baseline but 2"d-order kinematics and dynamics)

Tension —torsion coupling terms
Bending —torsion coupling terms
Pre-twist —torsion coupling term
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WP 2.1 Non-linear effects

Linear vs. non linear beam model analysis, NTM at 11.4 m/s
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WP 2.1 Structural dynamics, large deflections
& non-linear effects

Summary
Significant contributions obtained by

= Formulating the dynamic equations in the
deformed state

= |ncluding bending —torsion coupling terms

)
(G
<
=

RRRRRRRRRRRRRRRRRRRRRRR



WP2.2 Advanced aerodynamic models

Objectives

to identify the limitations in the engineering aerodynamic modeling in
BEM type codes

Approach

inter comparison of results of models of different complexity applied
on MW rotors, RWT- 5SMW

Shear and turbulence wind inflow for CFD-models

Simulation cases

uniform inflow on RWT turbine (stiff model)
strong wind shear in inflow

unsteady inflow (turbulent)- not yet performed
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WP2.2 Blade forces normal and tangential

Simulations with various
codes at 8 m/s

uniform inflow

5MW RWT at 8 m/s
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Wind speed with height, night- day, Hevsare

Wind speed, mean
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http://veaonline.risoe.dk

Measured inflow angle on the NM80 at Tjaereborg during a period with

strong shear and low turbulence
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Wake pattern, CFD with strong inflow shear




WP2.2 Blade normal force

blade up

SMW RWT at 8 m/s -- WIND SHEAR WITH EXPONENT 0.55 -- AZIMTH 0 DEG.
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WP2.2 Blade normal force
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WP2.2 Advanced aerodynamic models

Summary

uniform inflow and low wind speed a good
correlation 1s found between all models

at high wind speed and uniform inflow
considerable deviations are seen on the load
distribution along the blade

for the strong wind shear case, considerable
deviations between the models are seen
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Approach:

» Develope detailed models for structural and
aerodynamic analysis for a few promising flow
control concepts (in close corporation with

WP 1A5).

e Deformable camberline.
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Dynamic Stall: Harmonic Alpha and Beta

Blue: Alpha and Beta in phase
Black: No Beta
Red: In counter-phase (180° shift)
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WP 2.4: Aeroelastic stability and total

damping including hydrodynamics
Approach:
*Aerodynamic damping and
aeroelastic stability of the RWT 5 " TE——
MW turbine | - .
*Blade structural damping model
*CFD-structure coupling

KRadius =3 m
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WP 2.4: Aerodynamic damping of blade modes
for RWT 5 MW

First flapwise mode First edgewise mode
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WP 2.4: Aeroelastic stability and total damping
including hydrodynamics.
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WP 2.5 Computation of aerodynamic noise—
coupled CFD-CAA models

untreat¢9 O’®
ApproaCh : ‘,,,;5: tripped
* Boundary-layer experiments to validate and =0

select appropriate turbulence models.

 Improve the capability of existing stochastic
turbulence models for CFD-CAA coupling.

e Development of CAA schemes for computation of
aeroacoustic noise generation as function of

detailed turbulence data from CFD computation on

a 2D airfoill.
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Test Cases : VTE Model Developed at LWT
(SIROCCO Project)

=goal: variation of boundary-layer parameters at trailing-edge
=requires strong contour change over major part of chord length
=three variations: VTE_lin, VTE_kav (and VTE_vex)

1.5 - — = — — — = VTE_kav
- ~ VTE_lin
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/ \ Wind tunnel model
with adjustable shape
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VTE_kav . Re =3.093 x10°, Ma=0.178, C, =0.7, »
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Blunt Trailing Edge Noise
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