2009 European Wind Energy Conference and Exhibition Marseille, France, 16–19 March 2009 Session BS4: Aerodynamics & Aeroelastic Stability

Stability Analysis of Parked Wind Turbine Blades

Evangelos Politis, Panagiotis Chaviaropoulos

Center for Renewable Energy Sources, Greece

Vasilis Riziotis, Spyros Voutsinas

National Technical University of Athens, Greece

Ignacio Romero-Sanz UpWind WP1B1 Technology Department, Gamesa, Spain

Integrated Wind Turbine Design

Work carried out in WP1B1 of UpWind Project

- ✓ Innovative blade design
 - ✓ Aeroelastic design improvements
 - ✓ State-of-the-art issues are investigated
- ✓ Aero-servo-elastic stability of blades and wind turbines in operation has been tackled by the wind energy community

Objective/Motivation

✓ Examine stability of blades under parked conditions

- ✓ Parked conditions (instead of idling) to facilitate the calculations
- ✓ Contribution to fatigue loading of blades to be also considered during design phase:
 - ✓ Extreme winds of 50 years recurrence period
 - \checkmark High angles of attach in the stall regime
 - ✓ Massive flow separation at whole blade span
- ✓ Application on a 40-meter blade designed in Upwind

Challenges

- ✓ Prediction of aerodynamic loads in fully separated flow conditions
 - ✓ Dynamic stall models provide loads for angles of attack in the maximum lift regime
 - \checkmark Not tuned for incidences of ±90°
- \checkmark Actuator disk theory is not valid
 - ✓ Polars of airfoils are not measured at such angles of attack
- ✓ Standards include load cases for parked blades at extreme yaw misalignments

The Tool

- ✓ Baseline Tool:
 - ✓ Industry standard aeroelastic stability tool
 - ✓ Beam element method with twelve DOFs per element
 - Multi-body approach for dynamic and structural coupling of components
 - ✓ Blade element momentum theory for aerodynamics modelling
 - ✓ Extended Onera Lift and Drag modelling of unsteadiness and dynamic stall through `Aeroelastic Beam Element' approach

The Tool

✓ Modification for parked conditions:

✓ 2D strip theory, neglecting wake effects

✓ Linearization

✓ Reference steady-state (static problem)

✓ First order system

 $\mathbf{x} = A(\mathbf{x}_{\theta}, \mathbf{x}_{\theta}) \cdot \mathbf{x} + \mathbf{B}$

✓ Eigenvalues of constant coefficient matrix *A* provide natural frequencies and damping of the blade

The Blade

✓ Reference blade (around 40m) designed in UpWind.

- ✓ Infinitely stiff
- ✓ No structural damping

Mode Description	Natural frequency [Hz]	
	0 rpm	16.7 rpm
1st flap	1.17	1.24
1st lag	1.55	1.56
2nd flap	2.95	3.04
2nd lag	4.31	4.35
3rd flap	5.95	6.03
3rd lag	9.41	9.46

Aeroelastic performance of the blade

✓ Frequencies and damping of first and second flap and lag modes

Stand-still blade analysis

Definition of yaw angle

✓ Aeroelastic damping of first and second flap mode using quasi-steady aerodynamics

EWEC 2009

17 March 2009

10

✓ Aeroelastic damping of first and second lag mode using quasi-steady aerodynamics

✓ Aeroelastic damping of first and second flap mode using quasi-steady aerodynamics

EWEC 2009

17 March 2009

✓ Aeroelastic damping of first and second lag mode using quasi-steady aerodynamics

Stand-still blade analysis

✓ Aeroelastic damping of first flap and lag modes for quasi-steady and unsteady aerodynamics

Stand-still blade analysis

✓ Aeroelastic damping of first flap and lag modes for quasi-steady and unsteady aerodynamics

✓ Aeroelastic damping of first flap and lag modes for quasi-steady and unsteady aerodynamics

17 March 2009

Conclusions

- ✓ Aeroelastic stability of a wind turbine blade under parked conditions for yaw conditions in the range ±180° and wind speeds up to 70 m/s
- ✓ Lowest aerodynamic damping appears in lead-lag mode
- ✓ Potential instabilities in flap mode would be limited to a narrow incidence band
- ✓ Unsteady modelling results in higher instabilities in lag modes compared to the quasi-steady

Outlook

EWEC 2009

- \checkmark Vortex type model of massively separated flows
- ✓ Vorticity emission takes place both from LE and TE
- ✓ Unsteady vortex shedding effect is taken into account

3D flat plate model

2D flat plate model

Acknowledgements

✓ This work has been partially financed by the EC within the FP6 UpWind project and by the Greek Secretariat for Research and Technology

 \checkmark Audience for its attention