2009 European Wind Energy Conference and ExhibitionMarseille, France, 16–19 March 2009Session BS4: Aerodynamics & Aeroelastic Stability

Stability Analysis ofParked Wind Turbine Blades

Evangelos Politis, Panagiotis Chaviaropoulos

Center for Renewable Energy Sources, Greece

Vasilis Riziotis, Spyros Voutsinas

National Technical University of Athens, Greece

**Ignacio Romero-Sanz
WP1B1** Technology Department, Gamesa, Spain

Integrated Wind Turbine Design

Work carried out in WP1B1 of UpWind Project

- \checkmark Innovative blade design
	- \checkmark Aeroelastic design improvements
	- \checkmark State-of-the-art issues are investigated
- \checkmark Aero-servo-elastic stability of blades and wind
turbines in eneration has been tackled by the u turbines in operation has been tackled by the wind energy community

Objective/Motivation

 \checkmark Examine stability of blades under parked conditions

- \checkmark Parked conditions (instead of idling) to facilitate the salgulations calculations
- \checkmark Contribution to fatigue loading of blades to be also considered during design phase:
	- \checkmark Extreme winds of 50 years recurrence period
	- \checkmark High angles of attach in the stall regime
	- \checkmark Massive flow separation at whole blade span
- \checkmark Application on a 40-meter blade designed in Upwind

Challenges

- \checkmark Prediction of aerodynamic loads in fully separated flow conditions. flow conditions
	- \checkmark Dynamic stall models provide loads for angles of attack in the maximum lift regime
	- \checkmark Not tuned for incidences of $\pm 90^\circ$
- \checkmark Actuator disk theory is not valid
	- \checkmark Polars of airfoils are not measured at such angles of attack
- \checkmark Standards include load cases for parked blades at \checkmark extreme yaw misalignments

The Tool

- **← Baseline Tool:**
	- \checkmark Industry standard aeroelastic stability tool
	- \checkmark Beam element method with twelve DOFs per element
	- \checkmark Multi-body approach for dynamic and structural coupling of components
	- \checkmark Blade element momentum theory for aerodynamics modelling
	- Extended Onera Lift and Drag modelling of unsteadiness and dynamic stall through 'Aeroelastic Beam Element' approach

The Tool

 \checkmark Modification for parked conditions:

 \checkmark 2D strip theory, neglecting wake effects

\checkmark Linearization

 \checkmark Reference steady-state (static problem)

 \checkmark First order system

 $\mathbf{x} = A(x_0, \mathbf{x}_0^c) \cdot x + B$

 \checkmark Eigenvalues of constant coefficient matrix **A** provide

natural frequencies and damning of the hlade natural frequencies and damping of the blade

The Blade

 \checkmark Reference blade (around 40m) designed in UpWind.

- \checkmark Infinitely stiff
- \checkmark No structural damping

Aeroelastic performance of the blade

 \checkmark Frequencies and damping of first and second flap and lag modes

 \checkmark Definition of yaw angle

 \checkmark Aeroelastic damping of first and second flap mode using quasi-steady aerodynamics

EWEC 2009 17 March 2009 17 March 2009 10

 \checkmark Aeroelastic damping of first and second lag mode using quasi-steady aerodynamics

 \checkmark Aeroelastic damping of first and second flap mode using quasi-steady aerodynamics

EWEC 2009 17 March 2009 12

 \checkmark Aeroelastic damping of first and second lag mode using quasi-steady aerodynamics

 \checkmark Aeroelastic damping of first flap and lag modes for quasi-steady and unsteady aerodynamics

 \checkmark Aeroelastic damping of first flap and lag modes for quasi-steady and unsteady aerodynamics

EWEC 2009 17 March 2009 15

 \checkmark Aeroelastic damping of first flap and lag modes for quasi-steady and unsteady aerodynamics

EWEC 2009 17 March 2009 16

Conclusions

- \checkmark Aeroelastic stability of a wind turbine blade under
explicitual senditions for value senditions in the range parked conditions for yaw conditions in the range $±180°$ and wind speeds up to 70 m/s
- Lowest aerodynamic damping appears in lead-lag mode
- \checkmark Potential instabilities in flap mode would be limited to \checkmark a narrow incidence band
- \checkmark Unsteady modelling results in higher instabilities in
lag modes compared to the quasi-steady lag modes compared to the quasi-steady

U

Outlook

- \checkmark Vortex type model of massively separated flows
- \checkmark Vorticity emission takes place both from LE and TE
- Unsteady vortex shedding effect is taken into account

3D flat plate model

2D flat plate model

Acknowledgements

 \checkmark This work has been partially financed by the EC
within the EP6 UnWind project and by the Greek within the FP6 UpWind project and by the Greek Secretariat for Research and Technology

 \checkmark Audience for its attention