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1 Preface 
The purpose of the Work Package 3.2 of UpWind is to gain knowledge and to develop 
fundamental understanding of materials of the strength, mechanical behaviour and 
fatigue resistance of composite materials used in blades for large scale wind turbines. 
This should be achieved on the basis of the development of micromechanical models 
of deformation behavior, and damage evolution of the composites, and implementation 
of the models in easy-to-use computational predictive/design tools. 

At this stage of the work, the following subtasks are solved: 

- Analysis of existing concepts and techniques of modeling of strength and 
damage of fiber reinforced composites, 

- Development of computational tools for the automatic generation of 3D 
micromechanical models of fiber reinforced composites, taking into account the 
random arrangement of fibers and interphases, 

- Development of a computational model of fiber failure as damage evolution in a 
section of a fiber, and the  

- Computational experiments: analysis of the interaction between different 
damage modes (fiber cracking, interface damage and matrix cracks) in materials 
with strongly nonlinear ductile matrix and viscoelastic polymer matrix, 

- Modeling of the effect of the fatigue frequency (in the low frequency region) on 
the fatigue damage evolution and lifetime of materials.  
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2 Overview 
 

Overview of concepts and methods of modelling of mechanical behavior, 
deformation and damage of unidirectional fiber reinforced composites. 
An overview of methods of the mathematical modelling of deformation, damage 
and fracture in fiber reinforced composites is presented. The models are classified 
into 4 main groups: shear lag-based, analytical models, fiber bundle model and its 
generalizations, fracture mechanics and continuum damage mechanics based 
models and numerical micromechanical models. The advantages and preferable 
areas of application of each approach are discussed.  
 
 

Development of computational tools for the automatic generation of 3D 
micromechanical models of fiber reinforced composites, and 
micromechanical damage modelling. 
A computer code for automatic generation of 3D multifiber micromechanical 
models of composites with random fiber arrangement is developed. The fiber/matrix 
interface damage is modeled as a finite element weakening in the interphase layers. 
The fiber cracking is simulated as the damage evolution in the randomly placed 
damageable layers in the fibers, using the ABAQUS subroutine User Defined Field.  
 

Computational modelling of damage growth, and competing damage 
mechanisms in long fiber reinforced composites. 
3D FE (finite element) simulations of deformation and damage evolution in fiber 
reinforced composites with strongly nonlinear ductile matrix are carried out. The 
effect of matrix cracks and the interface strength on the fiber failure is investigated 
numerically. It is demonstrated that the interface properties influence the bearing 
capacity and damage resistance of fibers: in the case of the weak fiber/matrix 
interface, fiber failure begins at much lower applied strains than in the case of the 
strong interface. 

Effect of the loading frequency on the damage evolution and lifetime: an 
analysis based on the kinetic concept of strength. 
On the basis of the kinetic theory of strength, a new approach to the modeling of 
material degradation in cyclic loading has been suggested. Assuming that not stress 
changes, but acting stresses cause the damage growth in materials under fatigue 
conditions, we applied the kinetic theory of strength to model the material 
degradation. The damage growth per cycle, the effect of the loading frequency on 
the lifetime and on the stiffness reduction in composites were determined 
analytically. It has been shown that the number of cycles to failure increases almost 
linearly and the damage growth per cycle decreases with increasing the loading 
frequency. 
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3 Modelling of damage and fracture of 
unidirectional fiber reinforced composites: a 

review 
 
 

Abstract: A overview of methods of the mathematical modelling of deformation, damage and 
fracture in fiber reinforced composites is presented. The models are classified into 4 main groups: 
shear lag-based, analytical models, fiber bundle model and its generalizations, fracture mechanics 
based models and numerical micromechanical models. The advantages and preferable areas of 
application of each approach are discussed.  
 
1. Introduction 
Fiber-reinforced composites are often characterized by their high specific strength 
and specific modulus parameters (i.e., strength to weight ratios), and are widely used 
for applications in low-weight components. The high strength and damage resistance 
of the composites are very important for a number of practical applications. In order 
to predict the strength and other properties of composites, a number of mathematical 
models of deformation, damage and failure of fiber reinforced composites have been 
developed.   
The purpose of this work is to review different models of deformation, damage and 
failure of fiber reinforced composites, to compare their strong sides and areas of 
application. 
The micromechanisms of damage in fiber reinforced composites (FRC) can be 
described as follows (Mishnaevsky Jr, 2007). If a fiber reinforced composite with 
ductile matrix is subject to longitudinal tensile loading, the main part of the load is 
born by the fibers, and they tend to fail first. After weakest fibers fail, the loading on 
remaining intact fibers increases. That may cause the failure of other, first of all, 
neighboring fibers. The cracks in the fibers cause higher stress concentration in the 
matrix, what can lead to the matrix cracking. However, if the fiber/matrix interface is 
weak, the crack will extend and grow along the interface. In the case of ceramic and 
other brittle matrix composites, the crack is formed initially in the matrix. If intact 
fibers are available behind the crack front and they are connecting the crack faces, 
the crack bridging mechanism is operative. In this case, the load is shared by the 
bridging fibers and crack tip, and the stress intensity factor on the crack tip is 
reduced. A higher amount of bringing fibers leads to the lower stress intensity factor 
on the crack tip, and the resistance to crack growth increases with increasing the 
crack length (R-curve behavior) (Sørensen, and Jacobsen, 1998, 2000) The extension 
of a crack, bridged by intact fibers, leads to the debonding and pull out of fibers that 
increase the fracture toughness of the material.  
In this work, we seek to apply the methods of the computational micromechanics to 
analyze the interaction between different damage mechanisms, and the effect of the 
phase and interface properties on the damage evolution in fiber reinforced 
composites. 
 
 

2. Shear lag based models and load redistribution schemas 
The shear lag model, developed by Cox in 1952 is one of the most often used 
approaches in the analysis of strength and damage of fiber reinforced composites. 
This model is often employed to analyze the load redistribution in fiber reinforced 
composites, resulting from failure of one or several fibers. This redistribution is 
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described in the framework of various load sharing models. In the fiber bundle 
model, developed by Daniels (1945), the global load sharing schema (GLS) was 
assumed:  i.e., the load, which was born by a broken fiber, is equally re-distributed 
over all the remaining intact fibers in the cross-section of the composite. As noted by 
Zhou and Wagner (1999), the GLS model is applicable only to a loose fiber bundle, 
with no matrix between the fibers. In the case of fibers which are bound together by 
the matrix, other models of the load sharing should be used.  
For the qualitative description of the load redistribution after the fiber failure, SCF 
(stress concentration factor) is introduced as a ratio between the local stress in an 
intact fiber (which is equal to the overload at the fiber related with the fiber break, 
and applied stress) and the applied stress (Zhou and Wagner, 1999). Harlow and 
Phoenix (1978) proposed the local load sharing (LLS) model, in which the extra-
load, related with the failed fiber(s), is transferred to two nearest neighbors of the 
fiber(s).  
Hedgepeth (1961) was first to apply the shear lag model to a multifiber system. He 
studied the stress distribution around broken fibers in 2D unidirectional composites 
with infinite array of fibers. Hedgepeth and van Dyke (1967) generalized the elastic 
model by Hedgepeth to the three-dimensional case and included the elastic-plastic 
matrix into the model. Considering an array of parallel fibers under axial loading, 
bonded to the matrix, they determined the average SCF in a fiber after the failure of 
k adjacent fibers: 

∏
= +

+
=

k

i i
iSCF

1 12
22

  
(1) 

Curtin (1991) noted that the problem of independent and successive fiber fractures 
under GLS condition is reduced to the problem of failure of single fiber in the 
matrix. Considering the cumulative number of defects in fibers from the Weibull 
distribution of fiber strengths, he estimated the ultimate strength of the composite as 
a function of  
the sliding resistance, and parameters of the Weibull distribution of the fiber 
strengths. 
The shear lag model was used by Wagner and Eitan (1993) to study the 
redistribution of stress from a failed fiber to its neighbors. They determined SCF for 
the case of load redistribution after one single fiber in a 2D unidirectional composite 
is broken, and demonstrated that the “local effect of a fiber break on the nearest 
neighbors is much milder than previously calculated, both as a function of the 
interfiber distance and of the number of adjacent broken fibers”.  
Zhou and Wagner (1999) proposed a model of stress redistribution after the fiber 
failure, which incorporated the effects of fiber/matrix debonding and fiber/matrix 
interfacial friction. The interfacial friction in the debonding region was calculated as 
proportional to the far-field longitudinal stress in the fiber. It was observed that SCF 
decreases with increasing interfiber distance.   
The effects of multiple fiber breaks and their interaction on the stress distribution 
and strength of composites can be analyzed with the use of the break influence 
superposition (BIS) technique. The BIS technique was developed by Sastry and 
Phoenix (1993) on the basis of Hedgepeth approach. In the framework of this 
technique, an infinite lamina with N aligned breaks, each subject to the unit 
compressive load, is considered. The fiber and matrix loads and displacement at 
arbitrary point are determined as weighted sums of the influences of N single breaks. 
The weighting factors are calculated from a system of N equations. The unit tensile 
load is then superimposed on the solution (Beyerlein et al., 1996).  
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This technique was employed and expanded in a series of works by Phoenix, 
Beyerlein, Landis and colleagues (see Beyerlein et al, 1996, Landis et al, 2000). 
Beyerlein and Phoenix (1996) generalized the break influence superposition 
technique, and developed the quadratic influence superposition (QIS) technique. The 
quadratic influence superposition technique allows to analyze the deformation and 
damage of elastic fibers in elastic- plastic matrix, taking into account the interface 
debonding. Using this method, Beyerlein and Phoenix studied stress distribution 
around arbitrary arrays of fiber breaks in a composite subject to simple tension.  The 
authors demonstrated that the size of the matrix damage region increases linearly 
with applied tensile load.  Using Monte-Carlo method and shear lag based models, 
Beyerlein et al. (1996) and Beyerlein and Phoenix (1997) studied the effects of the 
statistics of fiber strength on the fracture process. They assigned randomly (Weibull) 
distributed strengths to individual fibers, and simulated the evolution of random fiber 
fractures. It was observed that variability in fiber strength can lead to a nonlinear 
deformation mechanism of the composite.  
Landis et al. (1999) developed a three-dimensional shear lag model, in which matrix 
displacements was interpolated from the fiber displacements, and analyzed the stress 
distributions around a single fiber break in square or hexagonal fiber arrays. The 
finite element equations were transformed into differential equations and solved 
using Fourier transformations and the influence function technique.  Further, Landis 
et al. (2000) combined this approach with the Weibull fiber statistics and the 
influence superposition technique, and applied it to analyze the effect of statistical 
strength distribution and size effects on the strength of composites. 
The BIS technique has been combined with FEM by Li et al (2006). Li and 
colleagues modeled the stress transfer from broken to unbroken fibers in fiber 
reinforced polymer matrix composites. The damage evolution in composites, 
including the fiber fracture, damage cracking and interface debonding, was 
simulated using FEM combined with the Monte-Carlo technique. The special FE 
code was written according to the break influence superposition technique, to 
analyze multiple breaks. The authors observed in the numerical experiments, that 
while both low and high interface sliding strengths lead to the decrease of the 
composite strength (due to the large scale debonding and matrix cracking), the 
moderate interface sliding strength weakens the negative effect of the fiber fracture 
on the composite strength.  
An approach to the analysis of the interaction between multiple breaks in fibers, 
based on the Green’s function model (GFM), was proposed by Curtin and 
colleagues (s. Ibnabdeljalil and Curtin, 1997ab, Xia et al, 2001, 2002). Stating that 
the axial stress σi in an undamaged i-th fiber can be determined as a product of the 
axial applied stress pj across the j-th cross-section of the fiber and a Green function 
Gij , Curtin and colleagues determined the σi - pj relationships for the case of many 
broken fibers, transferring the stress on the remaining unbroken fibers. The Green 
function Gij determines the stress concentration factors at the remaining intact fibers. 
In this model, the stress state around a single fiber break (which can be obtained 
from any micromechanical solution) is used to determine the stress distribution in a 
composite with multiple fiber breaks. 
Ibnabdeljalil and Curtin (1997ab) employed the 3D lattice Green's function model to 
determine the stress distribution and to simulate damage accumulation in titanium 
matrix and ceramic matrix fiber reinforced composites under LLS conditions. They 
analyzed the size effects and other statistical aspects of the failure of composites, 
using the weakest-link statistics. Further, Ibnabdeljalil and Curtin considered damage 
evolution in fiber reinforced composites with a cluster of initial fiber breaks. Using 
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the Monte Carlo technique based on the 3D lattice Green's functions, they 
determined the stress distribution, and simulated the damage evolution under LLS 
conditions. It was shown that the tensile strength decreases with increasing the size 
of the initial cluster of broken fibers. 
Xia and Curtin (2001), and Xia et al. (2001) employed 3D FE micromechanical 
analysis to study the deformation and stress transfer in FRCs. The results of FEM 
(stress distribution around the broken fibers and the average axial stress 
concentration factor on fibers around the break) were used to extract the appropriate 
Green’s function in a larger scale model of stochastic fiber damage distribution. Xia 
et al. (2002) compared the shear lag and 3D FE micromechanical models of stress 
transfer in composites. In the 3D FE model, they assumed the same hexagonal 
geometry and other microstructural parameters as in the shear lag model. Taking into 
account the symmetry, they reduced the model to the 30o wedge. The stress 
distribution, fiber stress concentration factor and other parameters have been 
compared. They concluded that the shear lag model is accurate for the high 
fiber/matrix stiffness ratios a high fiber volume fractions, but not for the low volume 
fractions of fibers.   
 
3. Fiber bundle model and its versions 
A group of models of damage and failure of fiber reinforced composites is based on 
the fiber bundle model (FBM). The classical FBM model, proposed by Daniels in 
1945, as well as some early modifications of this model are discussed in Chapter 4. 
Recently, a number of FDM-based models were developed, which take into account 
the roles of the matrix and interfaces, nonlinear behavior of fibers and the matrix and 
the real micromechanisms of composite failure. 
The continuous damage fiber bundle model (CDFBM) as well as versions of this 
model with creep rupture and interfacial failure were developed by Kun et al. (2000). 
In the CDFBM, the multiple failure of each fiber (i.e., continuous damage) is 
included into the model. Using this approach, Kun, Herrmann and colleagues 
investigated the scaling behavior of the composites, and observed that the multiple 
failures of brittle fibers can lead to ductile behavior of the composite.  
In the creep rupture model, they described the fiber behavior by Kelvin-Voigt 
elements, consisting of springs and dashpots in parallel. The failure condition was 
analyzed using the strain failure criterion, with a randomly distributed failure 
threshold. The interfaces between fibers were described as arrays of elastic beams, 
which may be stretched and bent, and fail, if the load exceeds some critical level. 
With this model, Kun, Herrmann and colleagues investigated further the lifetime of 
the bundle as a function of the distance to the critical stress point, and demonstrated 
that the scaling laws in the creep rupture are analog to those in second order phase 
transitions. Using the power law of stress redistribution given in the form 

γσ −∝ radd , Hidalgo et al (2002) analyzed the effect of the range of interaction 
between failed fibers on the fracture of material. (Here r – distance from the crack 
tip, addσ  - stress increase due to the fiber failure at a distance r,  γ – power 
coefficient). The power law is reduced to the case of global load sharing, if γ →0, 
and to the local load sharing, if γ →∞. Hidalgo and colleagues observed in their 
numerical experiments that the transition from the mean field regime of the load 
redistribution (i.e., when the strength of the material does not depend on the system 
size) to the short range behavior regime (when the correlated growth of clusters of 
broken fibers goes on) takes place at γ=2.0.  
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Raischel et al. (2006) extended the FBM further for the case when failed fibers carry 
a fraction of their load (i.e., the plasticity of fibers is included into the model). Using 
the plastic fiber bundle model, they have shown that the failure behavior of the 
material is strongly dependent on whether failed fibers still bear load: the 
macroscopic composite response can become plastic, if the fibers are plastic and the 
loads are redistributed according to GLS schema. 
Hemmer and Hansen (1992) analyzed the occurrence, statistics and dynamics of 
bursts in the fiber bundle model with global load sharing. (A burst event takes place 
when several fibers break simultaneously). Considering statistical size distribution of 
burst events, they demonstrated that the histogram of burst events D(� ) can be 
described in the very general case by formula: 

D(Δ ) = Δ -2.5   (2) 

where Δ - the number of fibers that break simultaneously during a burst event. This 
law is independent of the strength distribution of the individual fibers, and the value 
5/2 is therefore a universal critical exponent. Further, this law holds even if the load 
redistribution does not follow the global load sharing schema, but the load is re-
distributed to the neighboring fibers according to a power law. If, however, the load 
from a failed fiber is distributed only to the two nearest neighbors, the burst 
histogram does not follow the power law anymore. Hansen (2005) noted that the 
availability of universal critical exponents should be considered as an argument 
supporting the assumption about the fracture process as a self-organizing system. 
 
4. Fracture mechanics based models and crack bridging 
In connection with the development of ceramic and other brittle matrix composites, 
the problem of the material toughening by crack-bridging fibers gained in 
importance. In the cracked composite with bridging fibers, the fiber/matrix bonding 
(frictional bonding or chemical bonding) determine the fracture resistance of the 
composite. Figure 1 shows the schema of frictional and chemical bonding of 
bridging fibers in the composite.   
The classical fracture mechanics based model of matrix cracking was developed by 
Aveston, Cooper and Kelly in 1971. (The model is often referred to as ACK). 
Assuming that the fibers are held in the matrix only by frictional stresses, Aveston 
and colleagues carried out an analysis of the energy changes in a ceramic composite 
due to the matrix cracking. On the basis of the energy analysis, they obtained the 
condition of matrix cracking in composites. 
Marshall, Cox and Evans (1985) and Marshall and Cox (1987) used the stress 
intensity approach to determine the matrix cracking stress in composites. The 
bridging fibers were represented by the traction forces connecting the fibers through 
the crack.  It was supposed that the fibers are held in the matrix by frictional 
bonding. The matrix cracking stress was determined by equating the composite 
stress intensity factor, defined through the distribution of closure pressure on the 
crack surface, to the critical matrix stress intensity factor. Further, Marshall and Cox 
studied the conditions of the transitions between failure mechanisms (matrix vs. fiber 
failure) and the catastrophic failure and determined the fracture toughness of 
composites as functions of the normalized fiber strength.  
Budiansky, Hutchinson and Evans (1986) considered the propagation of steady state 
matrix cracks in composites, and generalized some results of the Aveston-Cooper-
Kelly theory, including the results for the initial matrix stresses. Considering the 
energy balance and taking into account the frictional energy and potential energy 
changes due to the crack extension, Budiansky and colleagues determined the 
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matrix cracking stress for composites with unbonded (frictionally constrained and 
slipping) and initially bonded, debonding fibers. 
In several works, continuum models of a bridged matrix crack are used. In these 
models, the effect of fibers on the crack faces is smoothed over the crack length and 
modeled by continuous distribution of tractions, acting on the crack faces. The 
schema of the non-linear spring bridging model, used by Budiansky et al. (1995), is 
shown in Figure 2. The relationships between the crack bridging stresses and the 
crack opening displacement (bridging laws) are used to describe the effect of fibers 
on the crack propagation. For the case of the constant interface sliding stress τ, the 
crack opening displacement u can be determined as a function of the bridging stress 
σ (Aveston et al, 1971, Zok, 2000): 

2λσ=u , (3) 

where 22

22

4

)1(2

EEv
Evr

ff

mf
τ

λ
−

= , E – composite Young’s modulus, r – fiber radius, 

indices f and m relate to the fibers and matrix, respectively. 
McCartney (1987) used the continuum model of a bridged matrix crack, in order to 
derive the ACK-type matrix cracking criterion on the basis of the crack theory 
analysis. McCartney considered the energy balance for continuum and discrete crack 
models, and demonstrated that the Griffith fracture criterion is valid for the matrix 
cracking in the composites. He determined further the effective traction distribution 
on the crack faces resulting from the effect of fibers, and the stress intensity factor 
for the matrix crack.  
Hutchinson and Jensen (1990) used an axisymmetric cylinder model to analyze the 
fiber debonding accompanied by the frictional sliding (both constant and Coulomb 
friction) on the debonded surface. Considering the debonding as mode II interface 
fracture, Hutchinson and Jensen determined the debonding stress and the energy 
release rate for a steady-state debonding crack. 
Slaughter (1991) developed a self-similar model for calculation the equivalent spring 
constant (i.e., the proportionality coefficient between the far-field stress and the part 
of the axial displacement related with the crack opening, see Budiansky and 
Amazigo, 1989) in the crack bridging problem. His approach is based on the load 
transfer model by Slaughter and Sanders (1991), in which the effect of an embedded 
fiber on matrix is approximated by a distribution of axial forces and dilatations along 
the fiber axis.  
Pagano and Kim (1994) studied the damage initiation and growth in fiber glass-
ceramic matrix composites under flexural loading.  Assuming that an annular crack 
surrounding a fiber (and lying in the plane normal to fiber) extends only to the 
neighboring fibers of the hexagonal array, they developed the axisymmetric damage 
model and calculated the energy release rate as a function of the volume fraction of 
fibers. Pagano (1998) employed the axisymmetric damage model to analyze the 
failure modes of glass matrices reinforced by coated SiC fibers.   
Using the shear lag model and the continuously distributed nonlinear springs model, 
Budiansky, Evans and Hutchinson (1995) determined the stresses in the matrix 
bridged by intact and debonding fibers, and derived an equivalent crack-bridging 
law, which includes the effect of debonding toughness and frictional sliding.   
Zok et al. (1997) studied the deformation behavior of ductile matrix composites with 
multiple matrix cracks. Substituting the bridging law into the equation of the crack 
opening profile and integrating, Zok and colleagues obtained an approximate 
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analytical solution for COD profile for short and steady-state long cracks. For the 
long cracks, it was demonstrated that “the crack area scales with the square of the 
stress”. 
Gonzalez-Chi and Young (1998) applied the partial-debonding theory by Piggott 
(1987) to analyze the crack bridging. In the framework of this theory (based on the 
shear lag model and developed for the analysis of the fiber pullout tests), the 
fiber/matrix interface is assumed to consist of a debonded area (where the stress 
changes linearly along the fiber length) and the fully bonded, elastically deforming 
area (Piggott, 1987). Considering each fiber and surrounding matrix as a single pull-
out test, Gonzalez-Chi and Young determined stresses in the fiber and on the 
interface. The model was compared with the experimental (Raman spectroscopy) 
analysis of the stress distribution in the composite.  
 
5. Continuum damage mechanics based models 
A number of models of failure behavior of fiber reinforced composites are based on 
the methods of continuum damage mechanics. The advantages of the CDM approach 
for the modeling of fiber reinforced composites include rather simple definitions of  
damage variables in the unidirectional materials, and, consequently, the 
straightforwardness of its application. 
Hild, Leckie and colleagues employed the methods of the Continuum Damage 
Mechanics, formulated within the framework of the thermodynanics of irreversible 
processes, to the fiber reinforced composites.  
Hild et al. (1994, 1996) and Burr et al. (1997) considered the fiber and matrix 
breakage in ceramic-matrix composites. Hild and colleagues introduced the internal 
state variables, describing the matrix cracking (damage variable, depending on the 
moments of the spacing distribution of cracks in the matrix), debonding and sliding 
(inelastic strain, and stored energy density associated with debonding and sliding). 
From the formula for the total free energy density, they derived equations for the 
overall stress, energy release rate density, and other parameters.  
Megnis et al. (2004) employed continuum damage mechanics to develop 
thermodynamically consistent formulation for damageable FRCs. Fiber fracture was 
included into model by determining the corresponding internal state variable. The 
damage tensor was determined using a unit cell model of a cracked fiber in the 
matrix. The stiffness degradation of the composite as a function of the applied strain 
was determined numerically, and compared with the experimental data.  
Weigel, Kroeplin and Dinkler developed a material law for ceramic matrix 
composites (C/C-SiC) in the framework of continuum damage mechanics. 
Parameters of the model were determined from the micromechanical analysis of 
different damage modes: stochastic fiber failures under tensile loading, transverse 
cracking in longitudinal plies, fiber bundle microbuckling under compression. Using 
the Weibull-type law for the failure probability of fibers and homogeneous load 
distribution, they derived the stress-strain relation for fiber bundle under axial 
loading. Further, the strain-stress relationships for the damageable longitudinal ply 
was obtained analytically. For the case of shear damage, stress strain relations was 
derived using a model with two damage variables (which takes into account the 
damage coupling between tension and shear), and the effective stress concept. To 
analyse the fiber microbuckling under compression, they considered a half-wave of a 
fiber of sinusoidal shape. Using the conditions of force and moment equilibrium, and 
approximating the displacement field by sinusoidal function, they determined the 
critical force for the failure due to fiber buckling or interface debonding.  
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6. Numerical micromechanical models of damage and fracture 
In a series of works, the composite deformation and crack growth under transverse 
loading was simulated using micromechanical finite element models.  
Brockenborough et al. (1991) used unit cell models for different (square edge-
packing, diagonal-packing and triangle-packing) periodic fiber arrangements to 
study the effect of the fiber distribution and cross-sectional geometry on the 
deformation (stress-strain response and stress distribution) in Al alloy reinforced 
with boron fibers. Considering the random, triangle and square edge and square 
diagonal packing of fibers, and different fiber shapes, they demonstrated that the 
fiber arrangement influences the constitutive response of composites much more 
than the fiber shape. 
Böhm and Rammerstorfer (1993) suggested a modified unit cell with an off-center 
fiber, which enables the application of this model to composites with non-strict 
regularity of the fiber arrangement. Using this model, they studied the effect of fiber 
arrangement and clustering on the stress field and damage initiation in Al alloy 
reinforced by boron fibers, and computed microscale stress and strain fields for 
periodic, modified periodic and clustered periodic fiber arrangements. Böhm et al. 
(1993) used the unit cell approach with the perturbing periodic square array of fibers 
to model deterministic but less ordered fiber arrangements in fiber reinforced 
composites.  
Asp et al. (1996ab) studied numerically the failure initiation (yielding and cavitation-
induced brittle failure) in the polymer matrix of composites subject to transverse 
loading. They considered unit cells with different fiber arrangements (square, 
hexagonal, diagonal), and determined the zones of yielding and cavitation-induced 
brittle fracture, using the von Mises yield criterion and the dilatational energy 
density criterion, respectively. It was shown that failure by cavitation-induced cracks 
occurs earlier than the matrix yielding. Further, Asp and colleagues studied the effect 
of the interphases layer properties on the transverse failure of fiber-reinforced epoxy. 
They demonstrated that the transverse failure strain increases with increasing the 
thickness of the interphase layer, and the Poisson’s ratio of the interphases.  
Chen and Papathanasiou (2004) employed the boundary element method  to analyse 
the effect of the fiber arrangement on the interface stresses in transversely loaded 
elastic composites. They considered multifiber unit cells, generated with the use of 
Monte-Carlo perturbation method, with varied volume fractions and mimimum inter-
fiber distances.  Chen and Papathanasiou demonstrated that the distribution of 
maximum interface stresses on each fiber follows the Weibull-like probability 
distribution.  
Tay et al. (2005) employed the strain invariant failure theory (SIFT) and the 
element-failure based method (EFM) to simulate the damage evolution in laminates. 
In the framework of SIFT, the failure condition is defined via three strain invariant 
values, “amplified” through micromechanical, unit cell analysis of the composite. In 
the framework of EFM, the local damage of a material is represented as a reduction 
of load-bearing capacity of finite elements, which is realised by “applying a set of 
external nodal forces such that nett internal nodal forces of elements adjacent to the 
damaged element are  reduced or zeroed”. The authors modeled the damage growth 
in carbon-epoxy cross-ply laminates.  
Trias et al. (2006a) simulated the transverse matrix cracking in FRCs. Real 
microstructures of carbon fiber reinforced polymers were determined with the use of 
the digital image analysis, introduced into FE models and simulated in the 
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framework of the embedded cell approach. In so doing, they used the results from 
Trias et al (2006b), who determined the critical size of a statistical RVE for carbon 
fiber reinforced polymers, taking into account both mechanical and statistical (point 
pattern) criteria.  Trias et al. obtained probability density functions of the stress, 
strain components and the dilatational energy density in the loaded composites. 
Vejen and Pyrz (2002) modeled the transverse crack growth in long fiber 
composites. The criteria of pure matrix cracking (strain density energy), fiber/matrix 
interface crack growth (bi-material model) and crack kinking out of a fiber/matrix 
interface were implemented into the automated crack propagation module of the own 
finite element package. As a result, Vejen and Pyrz obtained numerically the crack 
paths for different fiber distributions. The numerical results (crack paths) were 
compared with experimental data.  
Micromechanical unit cell models have been widely applied to the analysis of the 
composite failure under the tensile loading along the fiber direction, or off-axis 
loading.  
Sherwood and Quimby (1995) modeled damage growth and the effect of the 
interface bonding strength in titanium matrix long fiber reinforced composites, using 
unit cell models of unidirectional and cross-ply [0/90] composites. To model the 
non-linear time-dependent behavior of the matrix and silicon carbide fibers, they 
used the material model by Ramaswamy and Stouffer, implemented as a user-
supplied material model in the FE code ADINA. Several cases of the interface 
bonding were considered: perfectly bonded interface, weakly bonded interface or 
completely debonded interface. The debonded interfaces were modeled using the 
contact surface element. In order to model the weak, variable strength interface (in 
which the strength degrades with increasing tensile deformation and ultimately fails), 
Sherwood and Quimby placed rigid beams, which connect nodes on fibers and 
matrix (contact surface) to thermoplastic, damageable TWODSOLID elements on 
the interfaces. It was observed that the mechanical response of the UD composite 
with completely debonded interface is controlled by the mechanical behavior of the 
matrix, while the response of the cross-ply composite is controlled by the 
deformation and damage of fibers.  
Zhang et al (2004) studied toughening mechanisms of FRCs using a 
micromechanical model (“embedded reinforcement approach”), taking into account 
both fiber bridging and matrix cracking. They defined the cohesive law for the 
matrix cracking as a linearly decreasing function of the separation. Bilinear traction-
separation laws were taken for fiber-matrix debonding and the following interfacial 
friction. For different traction-separation laws of interfaces, R-curves were obtained. 
Zhang and colleagues demonstrated that the strong interfaces can lead to the lower 
toughness of the composites. 
Babuška, Andersson, Smith and Levin (1999) carried out statistical analysis of a 
digitized real microstructures of unidirectional fiber reinforced composites, using the 
local quadratic smoothing the volume fractions over squares of about 3 fiber 
diameters sizes. Further, the distribution of fiber centers was described in the form of 
of a normalized function of the mean number of points in a circle of radius r, as a 
function of r. The purpose of the elastic analysis was to derive a homogenized 
equation with stochastic coefficients, which has to be solved by an asymptotic 
expansion. First, the authors considered a 2D linear elastic problem with two fibers, 
and used p-version of FEM to derive a solution for the stress distribution. Then, they 
considered homogenization problem with hundreds of fibers, and obtained the stress 
distributions, histograms of the stress distribution and the relationships between 
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effective stiffness coefficient and the volume fraction of fibers. This model is a part 
of the multiscale solution scheme for laminated composites.   
Okabe et al. (2005) used spring element model (SEM) to simulate failure of UD 
composites. The SEM-based approach enabled to utilize linear matrix solver to 
describe strain fields and damage evolution in composites. Every element of fiber  
was  assigned a failure probability which follows the Weibull distribution. The stress 
distribution within the slip regions around broken fibers was described using the 
analytical models by Kelly-Tyson and the modified Cox model. Further, a hybrid 
SEM/FEM approach was formulated, and applied to simulate a Al2O3/polymer 
composite with 121 fibers, embedded into Al matrix. The authors compared the 
SEM method with 3D FEM and with shear lag models, and demonstrated that the 
SEM method is more efficient than the shear lag. 
Zhang et al (2005) simulated unidirectional fiber-reinforced polymers under off-axis 
loading, using 3D unit cell with nonlinear viscoelastic matrix and elastic fibers. In 
order to model the matrix cracking, smeared crack approach was used.   The matrix 
damage growth in the form of two “narrow bands” near the interface and along the 
fiber direction were observed in the numerical experiments.  
González and LLorca (2006) developed a multiscale 3D FE model of fracture in 
FRCs. The notched specimen from SiC fiber reinforced Ti matrix composites subject 
to three-point bending was considered. Three damage mechanisms, namely, plastic 
deformation of the matrix, brittle failure of fibers and frictional sliding on the 
interface were simulated. The fiber fracture was modeled by introducing interface 
elements randomly placed along the fibers.  The interface elements used the cohesive 
crack model (with random strengths) to simulate fracture. The fiber/matrix interface 
sliding was modeled using the elastic contact model in the FE code Abaqus. It was 
assumed that the interface strength is negligible, and that the fiber/matrix interaction 
is controlled by friction. The simulation results were compared with experiments 
(load-CMOD curve), and a good agreement between experimental and numerical 
results was observed. 
 

7. Modelling of compressive failure of composites  
The failure mechanisms of unidirectional composites under compressive loading 
differ strongly from those under tensile loading. The following failure mechanisms 
have been identified (Jelf and Fleck): fiber crushing, elastic and plastic 
microbuckling of fibers, and matrix failure (splitting, or shear band formation). The 
different failure mechanisms require the application of very different modelling 
approaches, in particular, in the case of discrete models. In many composites, 
kinking is the dominant compression failure mechanism (Moran, Shih, 1998). 
According to Moran et al, kinking can be separated into three stages: incipient 
kinking (microbuckling of fibers, caused by imperfections of microstructures and 
matrix shears), transient kinking (kink band propagation, unstable rotation of fibers 
within the band tip, and strong shear deformation of matrix, up to the locking the 
fibers in their orientation) and steady-state band broadening.  
A series of investigations of the first stage of the kinking, incipient kinking, has been 
carried out with the use of the analytical methods of theories of elasticity, and, later, 
plasticity. Sadowsky, Pu and Hussain (1967) considered a long fiber in infinitely 
large volume of elastic matrix under compression for the case of low volume content 
of fibers. Taking into account equilibrium equations, they derived a formula for 
critical compressive force, leading to the fiber buckling. Rosen and Schuerch 
considered buckling of fibers due to elastic instabilities, and recognized two 
buckling modes, the shear (in phase) and extension (out of phase) modes (Fleck).  In 
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their models, fibers and matrix were considered as layers, rather then cylinders 
embedded into a medium. The in-phase failure takes place at high concentration of 
stiff fibers, while the out-of phase mechanism is observed at low concentrations. 
Using the elastic microbuckling analysis, Rosen and Schuerch derived formulas for 
composite failure stress for these failure modes. 
In the works by Argon and Budiansky, the effects of matrix plasticity and the effect 
of the initial misalighment of the fibers were included into the analytical models. 
Argon considered kinking of rigid fibers in a pefectly plastic matrix, and determined 
the critical compressive stress as shear yield stress divided by the initial fiber 
misalignment angle. Budiansky (1983) generalized this analysis for the case of 
elastic plastic matrix. In his formula, the critical compressive stress is calculated as 
shear yield stress divided by the initial fiber misalignment angle plus the shear yield 
stress divided by shear modul. 
Budiansky and Fleck (1993) considered the compressive kinking of elastic fibers, 
taking into account the plastic strain hardening in the matrix, as well as combined 
compression and shear loading. They derived analytically formulas for kinking stress 
as a function of the parameters of the Ramberg-Osgood constitutive law for the 
matrix, and studied the effects of these parameters, kind band inclinations etc. on the 
kinking stress.  
Using the classical beam theory, Effendi et al. (1995) investigated the stress 
evolution in carbon fibers and organic matrix of a composite, and derived a formula 
for the composite microbuckling critical stress. Further, they developed a finite 
element model of the composite with sinusoidal fiber waviness (regular and 
irregular), and carried out numerical simulations of the deformation behaviour of the 
composite with elastic and elasto-plastic matrix. On the basis of the simulations, they 
drew the conclusion that “non-linear behavior of composites is not due to initial 
imperfections”. 
Christoffersen and Jensen (1996) and Jensen (1999) considered the kink band 
formation using the Rice’s theory of the localization of plastic deformation, and 
obtained a formula for the critical stress of kinking of high stiffness fibers. 
Christoffersen and Jensen (1996) formulated rate constitutive equations for fiber 
composites. Using these equations, they carried out the bifurcation analysis, and 
derived the condition of the fiber kinking. For the special case of infinitely rigid 
fibers, the kinking condition was obtained in the closed form.  
Pinho, Ianucci and Robinson (2006) developed a failure model of composites, which 
takes into account the nonlinear matrix shear behaviour and the effect of the 
misalignment on the fiber kinking. The matrix compression failure was simulated 
with the use of a model based on Mohr-Coulomb criterion. The 3D fiber kinking 
model, based on the Argon’s approach, was developed. The authors verified their 
model by comparison theoretical and experimental failure envelopes for 
glass/LY556 composites.  
Kiryakides et al (1995) modeled a composite as a 2D periodic array of imperfect 
fibers (with uniform sinusoidal and variable (decaying) amplitude sinusoidal 
imperfections). The experimentally measured properties of AS4 fibers and PEEK 
matrix were introduced into the model. The authors simulated the material 
deformation, and determined the axial stress-end shortening responses for different 
unit cells. The authors concluded that the deformation of the composites is localized 
in inclined bands. The matrix flow in the bands leads to the fiber bending, and 
ultimately, breakage.  
Niu and Talreja employed the Timoshenko shear deformation beam model, to re-
derive and generalize the results of Rosen (microbuckling) and Argon-Budyansky 
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(kind band formation). Minimizing the potential energy for a representative element 
consisting of Timoshenko beams (fibers) and elastic foundaruion (matrix), Niu and 
Talreja derived formula for the critical buckling load, which can be reduced to the 
Rosen equation.  They applied shear hinge analysis to model the kink band, and 
demonstratred that the misaligned load influences the critical buckling stress, along 
with the fiber misalignment.   
Lapusta, Harich and Wagner carried out 3D finite element simulations of cylindrical 
fiber, embedded to cylindrical matrix, and subject to a compressive loading. They 
calculated the critical (buckling) load and buckling half wavelength, and studied the 
effect of the buckling half wavelength on the critical displacement. 
In a series of works, the interaction and competition between several damage 
mechanisms (fiber splitting vs. kinking, matrix cracking vs. kinking) was considered. 
For the case of porous ceramic matrix, Jensen (1999) determined the effective 
moduli of the matrix from unit cell micromechanical analysis. Combining this model 
with the model of kinking based on the Rice’s plastic localization theory 
(Christoffersen and Jensen, 1996, Jensen, 1999), Jensen developed a non-
dimensional criterion D, characterizing the failure mode (matrix cracking vs. fiber 
kinking) in the composite. 
The later stages of kinking, the propagation and broadening of kink bands have a 
strong effect on the compressive behavior of composites. In several models of the 
formation and development of kind band, the fracture mechanics methods were 
applied.  
Moran et al. (1995) and Liu et al. (1996) derived formulas for the applied stress 
required for the band broadening, and the kink band angle, using the energy analysis 
and taking into account the plastic deformation of matrix, but no fiber failure.   
Soutis, Fleck and Smith (1991) studied the damage initiation and growth in carbon 
fiber/epoxy composite with a hole, using the cohesive zone model. The microbuckle 
growing from the hole was represented by a line crack, loaded on its faces by either 
constant stress or a stress, which value varies linearly with the crack displacement. It 
was demonstrated that the evolution of microbuckling can be simulated “with 
reasonable accuracy”, if the second model (i.e., the microbuckle as a line crack with 
a linear relation between normal traction and axial displacement across the 
microbuckle). 
Sutcliffe and Fleck (1994) suggested to model microbuckle propagation in carbon 
fiber-epoxy composites as mode II (for in-plane microbuckles) and mode I (out-of-
plane microbuckles) cracking.  They applied the crack bridging model to model the 
microbuckle propagation. The process zone at the tip of the microbuckle is 
characterized by the crack tip toughness. The microbuckle faces behind the tip can 
transmit the constant shear stress (for in-plane mcrobuckling) and constant normal 
stress (for out-of-plane microbuckling). The applicability of the bridging model to 
the microbuckle propagation is demonstrated, and the model is calibrated 
experimentally.  
Sutcliff, Fleck and Xin (1966) and Sutcliffe and Fleck (1997) developed a 
micromechanical FE model to investigate the in-plane microbuckling initiation and 
growth from a crack. In order to reduce the computational costs, the FE mesh was 
built as an inner region, embedded into an outer region. In the inner mesh, the matrix 
was meshed by 4-noded linear interpolation elements, and the fibers by 8-noded 
quadratic interpolation elements. The inner mesh represented alternating layers of 
fibers and matrix. In the outer mesh, the matrix was represented by four-noded 
elements, and fibers are given by line-beam elements.  The displacement field, 
obtained from the analytical model for compressive stress in an orthotropic solids, 



18  Risø-R-1601(EN) 

was applied at the outer mesh boundary. The microbuckle was modelled as mode II 
sliding crack, using interface elements. The direction of stable microbuckle 
propagation was predicted by calculating directions of the microbuckle propagation 
for several different initial orientations (Sutcliffe and Fleck (1997)). The tip 
toughness was calculated as the work necessary for rotating fibers to a lock up angle 
(i.e., when the volumetric strain in the matrix becomes zero). The compressive R-
curves were obtained in finite element simulations.  
Hsu et al. (1999) simulated the steady state axial propagation (broadening) of kind 
bands, using a micromechanical model with hexagonal arrangement of circular 
elastic fibers. The authors calculated the fiber rotation inside the kink band, and 
determined the propagation stress at various displacement rates. 
Bažant and colleagues (1999) analysed the size effect on the strength of composites, 
failing by kink band propagation. They calculated the fracture energy, J-integral and 
its critical value, required for the kind band propagation, and derived a formula for 
the nominal strength, which includes the size effect. Assuming that the fracture 
process zone at the end of the kink band is very small, they carried out asymptotic 
analysis and obtained the size effect formulas for notched specimens. The formulas 
were further generalized for the notch-free specimen, and verified by comparison 
with the experiments by Soutis, Curtis and Fleck (1993). 
Another numerical (FE) model of microbuckling was suggested by Fleck and Shu. 
They developed a model of fiber reinforced composites as “smeared-out Cosserat 
continuum”. The constitutive law with fiber diameter as a length scale was derived, 
using the model of composite as elastic Timoshenko beams (fibers) embedded into 
nonlinear plastic matrix.  They developed a FE code, based on the general Cosserat 
couple stress theory, and employed it to simulate the plastic microbuckling of a 
composite from a region of fiber waviness. This approach follows the earlier paper 
by Fleck et al. (1995), in which the couple stress theory was used to model the 
growth of the microbuckle band.  
Budiansky, Fleck and Amazigo (1998) considered the kind band broadening and 
transverse band propagation, using the geometrically nonlinear couple stress theory 
of kinking. Using the couple stresses to take into account the bending resistance of 
fibers, they derived formulas for the band broadening stress, and determined the 
conditions of a fracture-free band broadening.  
Vogler et al. (2001) simulated further the inclined growth of kink band, taking into 
account the effect of local and global imperfections of the microstructure. The so-
called “global” imperfection was given as a sinusoidal waviness of fibers along their 
axis, while “local imperfection” was given as sine wave added to a strip of many 
fibers at free left side. The linearly elastic fibers were embedded into elastic-plastic, 
hardening matrix. The unit cell was subject to pure compression, and compression 
and shear. The authors observed the initiation and growth of a kink band from a local 
imperfection across the model, and could predict the band width. It was observed 
that the kink band width increases with fiber diameter, yield stress of the matrix and 
the fiber volume fraction.  
 

8. Conclusions 
On the basis of the above review, one may state that the main approaches used in the 
analysis of the strength and damage of fiber reinforced composites are based on the 
shear lag model, fiber bundle model as well as micromechanical unit cell models. 
When analyzing the strength, damage and fracture of fiber reinforced composites, a 
number of challenges have to be overcome, among them the problem of the correct 
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representation of the load transfer and redistribution between fibers and matrix, 
taking into account the interaction between multiple fiber cracks, matrix and 
interface cracks, modeling the interface bonding mechanisms and their effects on the 
composite behavior. The load transfer from failed fibers to the matrix is modeled 
most often with the use of the shear lag model and its versions, direct 
micromechanical analysis or phenomenological load redistribution laws. In many 
works, micromechanical finite element simulations are used to complement, verify 
or test the studies, carried out with the use of other methods (Xia et al, 2001, Li et al, 
2006). One can observe that the points of interests of the mechanics of strength and 
failure of fiber reinforced composites lie in the area of the mesomechanics (rather 
than micromechanics): the interactions between many microstructural elements, and 
many microcracks/cracks play leading roles for the strength of the fiber reinforced 
composites.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  1. Schema: Mechanisms of the interface bonding in fiber bridged composites 
(interface sliding and chemical/physical bonding)  

 
 
 
 
 
 
 
 

Chemical bonding 
/interface 
damage  Frictional sliding 



20  Risø-R-1601(EN) 

 
 
 
 
 
 
 
 
 
 

Figure  2. Spring bridging model: the crack bridging by fibers is represented by  
continuously distributed nonlinear springs (after Budiansky et al, 1995)  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  3. Schema: Two cylinder model of debonding and pull-out of a fiber (after 
Hutchinson and Jensen, 1990). The dashed lines represent bonded interfaces.  
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4 Automatic generation of 3D microstructural 
models of unidirectional fiber reinforced 

composites: program, testing and application to 
damage simulations 

 
 

Abstract: 3D FE (finite element) simulations of deformation and damage evolution in fiber 
reinforced composites are carried out. The fiber/matrix interface damage is modeled as a finite element 
weakening in the interphase layers. The fiber cracking is simulated as the damage evolution in the 
randomly placed damageable layers in the fibers, using the ABAQUS subroutine User Defined Field. 
The effect of matrix cracks and the interface strength on the fiber failure is investigated numerically. It 
is demonstrated that the interface properties influence the bearing capacity and damage resistance of 
fibers: in the case of the weak fiber/matrix interface, fiber failure begins at much lower applied strains 
than in the case of the strong interface. 

 
 

1. Introduction 

The purpose of this work is to analyze the damage evolution of fiber reinforced 
composites taking, into account the microscale phase properties and the interaction 
between different damage modes.   
The micromechanisms of damage in fiber reinforced composites  (FRC)  can be 
described as follows [1]. If a fiber reinforced composite is subject to longitudinal 
tensile loading, the main part of the load is born by the fibers, and they tend to fail 
first. After weakest fibers fail, the load on remaining intact fibers increases. That 
may cause the failure of other, first of all, neighboring fibers. The cracks in the fibers 
cause higher stress concentration in the matrix, what can lead to the matrix cracking. 
However, if the fiber/matrix interface is weak, the crack will extend and grow along 
the interface. In the case of ceramic and other brittle matrix composites, the crack is 
formed initially in the matrix. If intact fibers are available behind the crack front and 
they are connecting the crack faces, the crack bridging mechanism is operative. In 
this case, the load is shared by the bridging fibers and crack tip, and the stress 
intensity factor on the crack tip is reduced. A higher amount of bringing fibers leads 
to the lower stress intensity factor on the crack tip, and the resistance to crack growth 
increases with increasing the crack length (R-curve behavior) [2, 3]. The extension 
of a crack, bridged by intact fibers, leads to the debonding and pull out of fibers that 
increase the fracture toughness of the material.  
In order to model the damage and failure of fiber reinforced composites under 
mechanical loading, several approaches are used. Among them, the analytical, shear-
lag based models (used often to analyze the load transfer and multiple cracking in 
composites) [12-21], the fiber bundle model (FBM) and its generalization [22-23], 
fracture mechanics-based models (which are applied quite often to the analysis of 
fiber bridging) [24-38] and, finally, micromechanical finite element models [39-46, 
see also review 47] can be listed. One of the challenges of modeling damage and 
fracture in FRC is the necessity to take into account the interplay between the 
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multiple fracturing in fibers, interface damage and debonding and the strongly 
nonlinear deformation behavior of the matrix. 
In this work, we seek to apply the methods of the computational micromechanics to 
analyze the interaction between different damage mechanisms, and the effect of the 
phase and interface properties on the damage evolution in fiber reinforced 
composites. 

2. Finite Element Model Generation and Damage Modeling  

In order to automate the generation of 3D micromechanical finite element models of 
composites, we developed a special program code “Meso3DFiber“ [1]. The program, 
based on the approach to the automatic generation of 3D microstructural models of 
materials described in [1, 19-48], is written in Compaq Visual Fortran. The program 
generates interactively a command file for the commercial software MSC/PATRAN. 
After the file is played with PATRAN, one obtains a 3D microstructural (unit cell) 
model of the composite with pre-defined parameters of its microstructure. The 
program allows to vary fiber sizes, the type of fiber arrangement (regular, random, 
clustered), volume content and amount of fibers. The finite element meshes were 
generated by sweeping the corresponding 2D meshes on the surface of the unit cell. 
The program is described in more details elsewhere [1, 50]. 
The simulations were done with ABAQUS/Standard. The following properties of the 
phases were used in the simulations. The SiC fibers behaved as elastic isotropic 
damageable solids, with Young modulus EP=485 GPa, and Poisson’s ratio 0.165. 
The matrix was modeled as isotropic elasto-plastic damageable solid, with Young 
modulus EM=73 GPa, and Poisson’s ratio 0.345. The stress-strain curve for the 
matrix was taken from [19-48] in the form of the Ludwik hardening law: 
σy=σyn+hεpl

n, where σy -the actual flow stress, σyn =205 MPa the initial yield stress, 
and εpl- the accumulated equivalent plastic strain, h and n - hardening coefficient and 
the hardening exponent, h= 457 MPa, n=0.20. The damage evolution in both fibers 
and in the interface layer was simulated, using the ABAQUS subroutine User 
Defined Field, described in [19-48].  
In order to model the fiber cracking, we employed the idea of pre-defined fracture 
planes, suggested by González and LLorca [46].  González and LLorca proposed to 
simulate the fiber fracture in composites by placing damageable (cohesive/interface) 
elements along the fiber length and creating therefore potential fracture planes in the 
model. The random arrangement of the potential failure planes in this case reflects 
the statistical variability of the fiber properties. Following this idea, we introduced 
damageable planes (layers) in several sections of fibers. The locations of the 
damageable layers in the fibers were determined using random number generator 
(uniform distribution). These layers have the same mechanical properties as the 
fibers (except that they are damageable). The damage evolution in these layers was 
modeled using the finite element weakening method [47, 24]. The failure condition 
of fibers (in the damageable layers) was the maximum principal stress, 1500 MPa. 
Figure 1 shows an example of a multifiber unit cell with 30 fibers of randomly 
varied radii, with and without the damageable layers.  

In order to simulate the interface cracking of composites, the model of interface as a 
“third (interphase) material layer” was employed. The idea of the interface layer 
model is based on the following reasoning. The surfaces of fibers are usually rather 
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rough, and that influences both the interface debonding process and the frictional 
sliding. The interface regions in many composites contain interphases, which 
influence the debonding process as well [25, 26]. Thus, the interface debonding does 
not occur as a two-dimensional opening of two contacting plane surfaces, but is 
rather a three-dimensional process in some layer between the homogeneous fiber and 
matrix materials. In order to take into account the non- planeliness (but rather fractal 
or three-dimensional nature) of the debonding surfaces and the debonding process, 
the interface damage and debonding are modeled as the damage evolution in a thin 
layer between two materials (fiber and matrix). This idea was also employed by 
Tursun et al. [27], who utilized the layer model to analyze damage processes in 
interfaces of Al/SiC particle reinforced composites.  Figure 2 shows an example of a 
multifiber unit cell with 3 fibers with interphase layer (yellow). 

 

 

 

A b 

 

Figure  1. Examples of the 3D unit cell models: a unit cell with 30 fibers with 
randomly varied radii (a) and the cell with removed damageable layers 
(b). 
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Figure  2. Example: a unit cell with 3 fibers and interphase (yellow) layers 
 

 

3. Numerical analysis of the effect of matrix cracks on fiber fracture  
In this section, we investigate the effect of cracks in the matrix on the fiber fracture. 
A number of three-dimensional multifiber unit cells with 20 fibers and volume 
content of fibers 25 % have been generated automatically with the use of the 
program “Meso3DFiber” and the commercial code MSC/PATRAN. The fibers in the 
unit cells were placed randomly in X and Y directions. The dimensions of the unit 
cells were 10 x 10 x 10 mm. The cells were subject to a uniaxial tensile displacement 
loading, 1 mm, along the axis of fibers (Z axis). Further, three versions of the unit 
cells were generated, with introduced matrix cracks (notches). The cracks were 
oriented horizontally, normal to the fiber axis and loading vector. The lengths of the 
cracks were taken 1.6 mm (1/6 of the cell size), 4.1 (5/12 of the cell size), 6.6 mm 
(8/12 of the cell size). The crack opening was taken 1/12 of the cell size (0.8 mm). 
Figure 3 shows the general appearance of a cell with a matrix crack. At this stage of 
the work, the very strong fiber/matrix interface bonding was assumed, and only the 
effect of the matrix cracks on the fiber fracture was studied.  

Figure 4 shows the von Mises stress distribution in the fibers (in the unit cell with 
the matrix cracks) before and after the fiber cracking. The stresses are rather low in 
the fiber regions close to the cracks, but increase with distance from the cracks 
(apparently, due to the load transfer via the shear stresses along the interface).  
Figure 5 shows the von Mises strress distribution in the matrix after the fiber failure.  
Figure 6 shows the von Mises strain distribution in the matrix with the long crack 
after the fiber failure. The regions of high strain level are seen along the surfaces of 
the potential initiation of the debonding crack (between the matrix crack and the 
fiber fractures). 
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Figures 7 and 8 give the stress-strain curves of the models and the damage (fraction 
of damaged elements in the damageable sections of the fibers) versus strain curves. 
One can see that the fiber cracking begins much earlier in the composites with the 
matrix cracks, than in non-cracked composites (apparently, due to the higher load in 
the bridging fibers, than in the fibers embedded in the matrix). The fiber failure leads 
to the much greater loss of stiffness in the composites with cracked matrix, than in 
non-cracked composites.  

Now, let us consider the reverse effect: the effect of the fiber fractures on the 
damage initiation in the matrix. The composite (with cracks in fibers, modeled as 
layers with finite elements with reduced stiffness) with the initially undamaged 
matrix is loaded, until the matrix crackling begins. The void growth in the matrix 
matrix was modeled with the use of the Rice-Tracey damage criterion [29], 
implemented in the Abaqus subroutine Used Defined field [48]. Figure 9 shows the 
distribution of damaged areas in the matrix relative to the fibers (top view). It is of 
interest that the damage initiates in the matrix not between closely located fibers, but 
rather in random cites. However, at later stages of damage evolution (right picture), 
the cracks grow between closely located fibers. 

 

 

 

 

Figure  3. Unit cell with a matrix crack and bridging fibers [1, 50] 
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Figure  4. Von Mises stress distribution in the fibers before (a) and after (b) the fiber 
cracking 

 

 

 

 

 



32  Risø-R-1601(EN) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

Figure  5. Von Mises stress distributions in the matrix after the fiber failure 
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Figure  6. Von Mises strain distributions in the matrix with a long crack after the fiber 
failure 
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Figure  7. Stress-strain curves for the unit cells with and without the matrix cracks. 
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Figure  8. Damage (fraction of damaged elements in the damageable sections of 
the fibers) versus strain curves for the unit cells with and without the 
matrix cracks.  
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Figure  9. Damage evolution (void growth) in the matrix triggered by the fiber 
fractures (top view) 
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4. Numerical simulations of interface damage and its interaction with 
matrix cracks and fiber fractures  

Let us consider the interaction between all three damage modes in composites: 
matrix cracks, interface damage and fiber fracture.  In order to model the interface 
damage, the model of interface as a “third layer” was used [25].  The interface layer 
was assumed to be a homogeneous isotropic material, with Young modulus 273 MPa 
(i.e., the mean value of the Young moduli of fiber and matrix) and Poisson’s ratio of 
the matrix. The thickness of the layer was taken 0.2 mm. Following Tursun et al. 
[27], we chose the maximum principal stress criterion for the interface damage 
(therefore, assuming rather brittle interface). Two values of the critical stress were 
taken: 2000 MPa (i.e., strong, but still damageable interface) and 1000 MPa (weak 
interface). While the interface layer is considered as a homogeneous material in the 
first approximation, the model can be further improved if the graded material model 
is used to represent the interface layer, with properties to be determined from the 
inverse analysis [1].   

Unit cells (with 15 fibers and 25% fiber volume content) were generated, and tested 
(with different strengths of interface layers). The unit cells without matrix cracks as 
well as with the cracks (notches) of 0.3 (short crack) and 0.58 of the cell size (long 
crack) were analyzed. The fiber arrangement in the cells with and without matrix 
cracks was the same.  

Figure 11 shows von Mises stress distribution in the fibers and in the interface layer 
before and after the fiber cracking (the case of the longer matrix crack, and of the 
strong damageable interface). One can see that the fiber cracking leads to the high 
stress concentration at the interfaces of the composite in the vicinity of the fiber 
cracks.  

Figure 12 shows the damage (fraction of failed elements) in fibers and in the 
interface plotted versus the applied strain, for the case of strong and weak interfaces, 
and the cracked matrix (long crack). In the case of the strong interface, the interface 
damage growth starts at a higher strain than the fiber cracking, and begins in the 
vicinity of the fiber cracks. Apparently, the interface damage growth is triggered by 
the fiber cracking. In the case of the weaker interface, the interface damage is not 
triggered by the fiber cracking, but precedes the fiber cracking: while in the unit cells 
with the stronger interfaces the interface damage begins only after the fibers fail (at 
the strain 0.00543), in the unit cells with weak interfaces the interface damage begins 
at the strain 0.0026.   

Thus, the interface properties influence the bearing capacity and damage resistance 
of fibers: in the case of the weak fiber/matrix interface, fiber failure begins at much 
lower applied strains than in the case of the strong interface.  

5. Conclusions 
Computational simulations of the deformation and damage evolution in fiber 
reinforced composites are presented. New techniques of modeling of fiber fracturing 
and the interface damage are proposed and employed: the finite element weakening 
in the layers (sections) of the fibers, randomly placed along the fiber length (for the 
modeling of fiber cracking), and the element weakening in the interphase layer 
between the fibers and matrix (for the modeling of the interface damage). Using 
these new methods and the developed techniques of the automatic generation of 3D 
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microstructural models of composites, we investigated numerically the effect of the 
matrix cracks and the interface strength on the fiber failure. It is demonstrated that 
the interface properties influence the bearing capacity and damage resistance of 
fibers: in the case of the weak fiber/matrix interface, fiber failure begins at much 
lower applied strains than in the case of the strong interface. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  10. Von Mises stresses in the interface layer in the vicinity of the 
cracked fibers. 
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Figure  11. Von Mises stresses in the unit cell with the matrix crack and the 
interface layer: before (a) and after (b) the fiber failure 
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Figure  12. Damage-strain curves for fibers and interface damage for the strong 
(failure stress 2000 MPa) and weak (failure stress 1000 MPa) interfaces 
[1]. The unit cell with the longer matrix crack (0.58 of the cell size) is 
considered. 
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5 Modeling of fatigue damage evolution on the 
basis of the kinetic concept of strength 

 

Abstract: On the basis of the kinetic theory of strength, a new approach to the modeling of material 
degradation in cyclic loading has been suggested. Assuming that not stress changes, but acting stresses 
cause the damage growth in materials under fatigue conditions, we applied the kinetic theory of 
strength to model the material degradation. The damage growth per cycle, the effect of the loading 
frequency on the lifetime and on the stiffness reduction in composites were determined analytically. It 
has been shown that the number of cycles to failure increases almost linearly and the damage growth 
per cycle decreases with increasing the loading frequency. 

 

1. Introduction 

One of the oldest problems in the fatigue analysis has been the analysis of the 
interrelations between the loading conditions and the lifetime of materials (number 
of the cycles to failure) [1-5]. Among the analytical, experimental and statistical 
approaches, used to investigate this problem, one may list the concepts based on the 
Wöhler curve and Basquin equation, rain-flow counting, Palmgren-Miner’s rule of 
damage accumulation, Paris law and different generalizations of the fracture and 
damage mechanics approaches The main challenge in most of these works was to 
take into account explicitly the temporal effects in fatigue, which do influence the 
lifetime of materials [1].  However, many of the underlying concepts and approaches 
used either do not take into account the temporal effects (as fracture mechanics), or 
are based on the data analysis and averaging (as Wöhler curves and Paris law) [5].  
In particular, the problem of the effect of loading frequency on the damage growth 
and lifetime of materials can be hardly explained in the framework of the static 
concepts. As noted by Parsons et al [2], “for different polymers, the crack growth 
rate (expressed in units of length per number of cycles) may decrease, remain nearly 
constant, or increase with increasing frequency”. Hertzberg et al. [7] studied the 
effect of test frequency on polymer fatigue performance, seeking to explain a 
diminution of fatigue resistance with increasing cyclic frequency in unnotched test 
samples, and the enhancement of fatigue resistance in many polymers with 
increasing cyclic frequency in notched samples. As noted by Hertzberg et al. [7], 
contradictory trends in frequency-sensitive materials properties are responsible for 
these differences. The relative fatigue behavior reflects “a competition between 
strain rate and creep effects”, as well as the effect of β transition in polymers [7].  
Takemori [8] noted that the conclusions on the frequency effects made on the basis 
of an analysis of unnotched specimens are not transferable on notched specimens 
case. Moskala [9] also noted that the fatigue resistance of the untoughened 
amorphous blend of polycarbonate was not affected by test frequency, whereas the 
fatigue resistance of the toughened blend increased with increasing frequency. 
Mandell and Meier [10] studied load frequency effects for cross-ply E-glass/epoxy 
laminates, carrying out tests with 3 frequencies (0.01, 0.1, and 1 Hz), and observed 
that the number of cycles increased with increasing load frequency.  
Saff, and other researchers also considered the effect of frequency on the fatigue 
behavior [11-13]. These and other results were summarized in [14] as follows: “at 
low frequency ranges where there is negligible heat dissipation, as the load 
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frequency increases, cycles to failure increase also. As higher frequency ranges are 
considered this increase is at a slower rate. When there is excessive heat dissipation, 
however, a reverse trend can be observed.” 
One of the ways to analyze the time-dependent effects on the fatigue crack growth 
is to consider the crack growth rate as a superposition of fatigue and creep 
components [7, 15]. So, Lee et al. [16] analyzed the damage growth in polymer 
composite materials on the basis of the fracture mechanics model by Wnuk [15]. 
Using the transition from fracture to damage mechanics concept, they derived the 
following formula  
dD/dN=c1 (σmax

2/D)m+(c2/f) (σmax
2/D)n  (1) 

where c1, c2, m, n – parameters of the material.  
The interrelations between the static and fatigue failure was considered in several 
works [25-27]. Miyano and colleagues [25] demonstrated that “the reciprocation law 
of time and temperature “ is applicable for both the static and fatigue strengths, and 
that both the fatigue and static fracture modes and the slope of the S-N curves 
remains the same in the large temperature range. Oh and Yoon [27] derived a 
formula for the fatigue life using the Zhurkov-type static life equation as well.   
The purpose of this work is to investigate the effect of the loading history in cyclic 
loading on the damage evolution and lifetime of materials using the kinetic theory of 
strength [17-24] and the stepwise representation of the loading variation during the 
fatigue cycles. As differed from the level crossing approach to the fatigue modeling 
suggested by Holm and de Mare [28] and applied by Holm, de Mare and colleagues 
[29, 30], we assume here that not the stress changes, but the acting constant stresses 
cause damage growth in materials. This assumption has been confirmed 
experimentally in many tests for static loading [24], and can be therefore used as a 
basis for the modeling of fatigue. Here only the case of relative low loading 
frequency ranges is considered, when the dynamic effects as well as the heat 
dissipation do not play any role. 
 
2. Kinetic model of failure applied to the time-dependent loading 
Let us consider a specimen under constant tensile stress (Figure 1a). It has been 
shown in many works (e.g., [1, 23-31]), that the lifetime of a specimen under 
constant load is an exponential function of applied stress and temperature:  

)exp(
kT

BAFt
σ

−=   
 

(2) 

where tF -time-to-fracture, σ- applied stress, a and c - kinetic constants of material, k 
- Boltzmann constant, T-  temperature. 
This formula has been derived by several authors on the basis of the analysis of the 
accumulation of broken atomistic bonds whose breakage is caused by 
thermofluctuational processes [2], or on the basis of the kinetic theory of failure [18, 
19]. Zhurkov introduced a kinetic concept of strength of solids, where time to 
rupture follows an Arrhenius-Eyring law with an energy barrier decreasing with 
increasing stress, and the driving mechanism for subcritical damaging processes is 
thermal activation [2]. Some versions of this formula were suggested by Hsiao [22], 
and Cherepanov [23]. Oliveira [32] further investigated and justified the kinetic 
model of fracture theoretically. Regel et al. [24] carried out experimental 
investigations of this interrelation and determined material parameters for this curve.  
Consider now a more complex case of multi-step loading, shown in Figure 1b. 
Apparently, a failure of a material is not a step-wise event after a lapse of time, but 
continuous process of the defect accumulation and degradation at the lower scale 



42  Risø-R-1601(EN) 

level.  In the case, shown in Figure 1b, the failure does not occur after each loading 
step (since the duration of the steps is much lower than the time-to-failure for a 
given constant loading). However, such multi-step loading can lead to the failure as 
well as the one long step loading.  Following [33, 36], let us define the damage 
degree in a material R as a function of the relation between the remaining and the 
total lifetime of an undamaged material 

R= t/tF=1-trem/ tF =1- (trem )exp()/
kT

BA σ
   

 

(3) 

where tF is determined by the formula (2), t – current time (duration of loading), trem 
– remaining time until failure. Thus, the total failure (t= tF) takes place when the 
damage degree D reaches the critical value 1. When the load is first applied, the 
value D is equal to zero. The residual lifetime of a specimen under loading decreases 
due to the formation of defects.  
Thus, in the case shown in Figure 1b, the damage parameter increases as: 

R=R1+R2+R3= )( 1

1
σFt

t
+

)( 2

2
σFt

t
+

)( 3

3
σFt

t
,  

 

(4) 

where tF (σ) – is the function of the lifetime versus the applied stress, given by the 
formula (2). The formula (4) is in fact similar to the well-known Miner’s rule.  
Therefore, the residual lifetime of the material after the loading shown in Figure 1b 
is (assuming that the specimen will be loaded by some constant load σ4): 
trem = tF (σ4) (1 - R).  (5) 
Using this model, we may study the effect of the loading history on the residual 
strength of materials. For the case of compressive loading, the parameters A and B 
in the formula (2) are different.  

 
Figure 1. Schemas of the constant (a) and multistep (b) loading of a 

specimen. 
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3. Fatigue of materials and frequency effect 
Now let us consider fatigue of materials, given as cyclic tension-tension loading, 
shown in Figure 2. By discretizing the loading curve, we can represent it as the 
multi-step loading, which is in principle similar to that shown in Figure 1b. The 
model developed in Section 2 is applicable to this type of loading.  
Consider the effect of the loading frequency on damage evolution in this case. 
Consider one half-cycle of the curve on Figure 2. We represent the time-dependence 
of the loading in the form: 
σ =at,  (6) 
where a=dσ/dt= rate of the loading growth at the half-step. 
In this case, the stress amplitude is σm=atcycle, where tcycle –one half cycle duration, 
and the relation between the stress amplitude σm and the loading frequency f is 
given by formula: 
f=1/2tcycle=a/2σm  (7) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Cyclic loading: representing of a half-cycle as a multistep loading 

t 

σ 

σ 

t 

σ 

t 



44  Risø-R-1601(EN) 

. 
 
Discretizing the half-cycle curve into M steps, we determine the damage increase 
for each i-th step as: 
Ri= ti/tF(σi)= (ti/A)exp(B σi/kT),  (8) 
where ti= tcycle/M, and is independent on i, σi=aiti. 
The damage increase as a result of the half-cycle is: 

Rc=∑
M

i
Ri =∑

M

i
 ( tcycle /MA)exp(aBitcycle/kTM).  

(9) 

Taking into account the formula (7), we obtain the relationship between the damage 
growth in each cycle Dc and the frequency of loading: 

Rc= )
2

exp(
2

1
fMkT
aiB

fMA

M

i
∑   

 
(10) 

 
One can see from this formula that the damage growth rate is a decreasing function 
of the loading frequency.   
Transforming the summation (10) into integration (M→ ∞, ti  → dt), we have from 
(8): 

Rc=∑
M

i
Ri =∑

M

i
(ti/A)exp(B at/kT)= )

kT
aBtexp(1

∫A
 

        =(kT/ABa)exp(aBtcycle/kT),  

 
(11) 

and 

Rc ∝ )2/exp(1 fkTaB
f

.  
(12) 

If, according to the Miner’s rule, we define the amount of cycles to failure as 
NF=1/2Rc, one may see from this formula that the number of cycles to failure 
increases with increasing the loading frequency. 
For instance, if we take A=7,0*106 s (=200 hours), B=5.5 E-29 J/Pa, time to failure tF 
(at the load 200 MPa) is about 100 hours. For this case, we calculated the 
dependency of the number of cycles to failure on the frequency of cyclic loading. 
Figure 3 gives the curves of the damage increase per cycle and the amount of cycles 
to failure plotted versus frequency of loading.   (σm=300 MPa, T=270 K).  
Using the formulas (10)-(12), we can determine the Wöhler (S-N) curve of the 
material. Defining the failure condition as  2RcN=1, we obtain: 

N= ⎟
⎠
⎞

⎜
⎝
⎛−

kT
B

kT
ABf mm σσ exp  

(13) 

This formula is obtained for the case of the triangular loading wave, shown in 
Figure 2. For the case of the squared wave, the S-N formula takes the form: 

N= ⎟
⎠
⎞

⎜
⎝
⎛−

kT
BfA mσexp2  

(14) 

where it is assumed that the duration of each loading is 1/2f.  
It is of interest that the total time to failure is constant: i.e. for the linear damage 
accumulation law, the frequency of loading does not affect the total time to failure 
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Figure 3. The damage increase per cycle (a) and the amount of cycles to 
failure (b) plotted versus frequency of loading.   

 
4. Stiffness reduction due to the microcracking and the lifetime of a 

material 
In this paper, we used the definition of the damage degree in the material as a 
parameter of residual lifetime. One can note here that the damage parameter in the 
continuum damage mechanics is usually assigned two meanings: first, microcracks 
density, and second, the closeness of the material to failure. The conditions of 
failure are formulated usually as an equality between the damage parameter and 
some critical value (see for example, [37]). Kachanov [38] has formulated two 
meanings of damage parameter as follows: "reduction of the effective elastic 
stiffness" and "the extent of progression towards the final fracture". The latter 
meaning corresponds evidently to the parameter R (relative residual lifetime), 
defined in the section 2.  
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Let us now establish relationships between the value R, defined in the section 2, and 
the damage parameter D, defined via the microcrack density or the deterioration of 
elastic stiffness. 
The damage growth law, derived by Lemaitre [37], has a form: 

2)1( D
C

dt
dD

−
= , (15) 

where C – a function of the stress state and material parameters, 

C= jipjip
veq

Es
HR

,,,,

2
)3/2(

2
εε

σ
&& , s - energy strength of damage (material constant), 

H =1, if the accumulated plastic strain reached the damage threshold, and H=0, 

otherwise, ν –Poisson’s ratio, vR  - triaxiality function, 

)²/)(21(33/)1(R eqmv σσν−+ν+= . The Lemaitre’s damage parameter is 

defined as the relative reduction of the load bearing section of a specimen, and can 
be determined as 
D= 1– Edam/E,  
where Edam and E – elasticity moduli of undamaged and damaged material. 
Integrating the equation (15), we derive the following cubic equation: 

D3– 3D2+D – ∫Cdt =0, (16) 

Taking the value C to be constant (over the loading period, compare Figure 1a), we 
may substitute t instead of ∫Cdt in this formula. 

Solving this cubic equation, we obtain the damage parameter D as a function of 
loading time: 
D=1 – (1 – Ct)1/3=1– (1 – CR tF)1/3, (17) 
Thereduction of relative stiffness at each cycle is therefore: 
dD/dN=Dc=1 – (1 – C/2f)1/3 (18) 
Similarly to the results by Lee et al. [16], the increase of damage D in each cycle is 
the more, the less the frequency of loading. 
Assuming that if D=1, R=1, the formula (17) is reduced to  
D=1 – (1 – R)1/3, (19) 
Using equation (17), we may relate the reduction of the material stiffness due to the 
microcracking, and the relative reduction of lifetime: 
Edam=E (1 – CR tF)1/3. (20) 
Apparently, the stiffness of the material decreases when the remaining lifetime 
decreases.  
Figure 4 shows the value of the Lemaitre damage D (relative reduction of the 
material stiffness) plotted versus R.  One can see that while the remaining lifetime is 
almost proportional to the stiffness of damaged material at the initial stages of the 
damage evolution, the microcrack density grows at the last stages of destruction 
with almost no effect on the remaining lifetime. 
It is of interest to compare the curve on Figure 4 with the results on the damage 
versus  percent of life for fiber reinforced polymer composites [34]. The linear-
plateau-linear D-R curve reflects three stages: the multiple fiber cracking (first 
linear part), crack coupling and delamination growth (plateau) and fracture (the 
second linear part). In our case, the intensive fracturing of the main bearing 
elements (fibers) at the initial stage of loading, leading to the quick weakening of 
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the material, is not included into the model (the model is developed for a general 
case, not for a fiber reinforced composites).  That is why the curve shown in Figure 
4 consists of two parts: slow, plateau-like material degradation (accumulation of 
defects, first without interaction, then with weak interaction), passing into the quick, 
autocatalytic growth of largest crack(s). 
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Figure 4. Lemaitre damage D (relative reduction of stiffness) plotted versus 

R (1 - ratio of the remaining/total lifetime). 
 
5. Composite materials 
On this stage, let us estimate the effect of loading on the stiffness of the composites.  
We consider a long fiber reinforced composite loaded along the fiber direction (see 
Figure 5). In this case, the Young modulus of the material is determined, according 
to the Voigt equation, by the formula: 
σcomp=vfσf+σmvm, (21) 
where vf, vm – volume content of fibers and matrix, respectively. Assuming that the 
fibers are linear elastic, and the matrix is viscoelastic, we have: 
σcomp=vfEf εcomp+σm (εcomp,Em) vm, (22) 
where σm (εcomp,Em) –stress as a function of the strain. If the matrix behavior can be 
modeled as a Kelvin-Voigt element, σm =Em εcomp+ compεβ & , where β – damping 

coefficient. 
Substituting (22) into (21), we have: 
σcomp=(Ecomp,0 – Df Ef0 vf – Dm Em0 vm) εcomp+ compεβ & vm, (23) 

where Ecomp,0 – initial Young modulus of the non-damaged composite. One may see 
that if only fibers become damaged (Dm=0), the stresses in the material are higher 
when the viscosity of the material increases.  
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Figure 5. Fiber reinforced composite: model loading   
 
Let us consider the effect of the availability of multiple constituents in the 
composite on its lifetime. The formula (1) was derived on the basis of both 
experimental data and probabilistic reasonings (accumulation of broken bonds in 
the material).  
Now, we consider the failure of macroelements of the material (fibers and matrix 
between fibers) as random events as well. As “elements” in this case, fibers and the 
layers of matrix between the nearest fibers are taken. At this stage of work, only 
composite with strong interfaces are modeled, thus, only fibers and the section of 
matrix between fibers can fail.  
According to the reliability theory, the reliability function (which is defined as a 
probability that an object does not fail in the time interval (0, t)) is calculated as: 

Rel(t)=1–ProbF=exp(-t/tF)= ⎥⎦
⎤

⎢⎣
⎡− )exp()/(exp

kT
BAt σ

, 
 

(24) 
where ProbF – probability that an object fails in the time interval (0, t). One should 
note that the formula (24) is derived on the basis of the assumption about 
exponential probability law for the time-to-failure. While this assumption has some 
justification (e.g.,  [36]), other probability laws can be considered here as well. 
Let us take a matrix between m fibers and the fibers around it, as a unit cell of 
material. In the case of the cell loaded along the fiber direction, it may be 
considered as a parallel system made from m +1 elements. For a simplest cell with 
m=3 fibers and the matrix between them, shown in Figure 6, the reliability function 
is given by formula: 
Relsys=1– (1– Relf)m(1–Relm). (25) 
Assuming that all the elements of the system fail independently (which is not 
correct, of course, due to the load redistribution after a fiber or the matrix become 
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damaged [35]), we can determine the mean time to failure of the parallel system 
under constant loading: 
tF=(tFf/m)+tFm– (tFf/m +tFm)-1 
Apparently, the relation (25) is correct for the constant stress applied during the 
time t (the case shown in Figure 1a). Consider now again the case shown in Figure 
1b. In this case, assuming the exponential reliability function, we have for a single 
fiber: 

Rel(t1+t2+t3) = exp[–
)( 1

1
σFt

t
–

)( 2

2
σFt

t
–

)( 3

3
σFt

t
] =exp(–

R1–R2–R3), 

 
(26) 

For the case of the fatigue loading (considered in the section 3), the probability that 
a single fiber does not fail during the half-cycle of fatigue loading, is given by the 
formula: 

Relf(tcycle) = exp(–Rc)=exp[–∑
M

i
(ti/Af)exp(Bf σf,i/kT)]. 

 
(27) 

where the index “f” means fiber. Substituting the index “m” for “f”, we can obtain a 
similar formula for the matrix section between the fibers.  
Substituting (27) into (25), and taking take into account the formulas (21)-(22) and 
the load sharing (following the effective stress concept [37]), we can calculate the 
reliability (probability of non-failure) of a given system.  
To give an example of the effect of the loading frequency on the reliability of the m 
fibers-matrix system after many cycles of loading, let us consider the following 
case. The matrix material, considered above, is reinforced by fibers of another, 
stronger material (with the parameter Af=2Am, where Am =A=7,0*106 s is equal to 
the value given above; all other parameters the same). Taking m=4, σm=300 MPa, 
T=270 K, we can obtain the reliability function after 107 loading cycles of loading 
as a function of the loading frequency. Figure 7 gives the curve for the considered 
model case. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Parallel system with 3 elements: Matrix with 3 fibers around it 

(side view and section) 
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Figure 7. Reliability of the system “4 fibers+matrix” after 107 loading 

cycles plotted versus the frequency of loading.  
 
6. Comparison with the experimental data 
Let us compare the results of the kinetic model of fatigue damage with some 
experimental results. The model, developed above, is applicable to the case when 
neither dynamic effects nor heat dissipation influence the damage growth in the 
materials. Thus, we use the experiments  by Mandell and Meier [10] to verify this 
model.  Mandell and Meier carried out the tension fatigue tests of plates 
constructured of eleven unidirectional plies of alternating 0 and 90o. The plates were 
subject to square and spike loadings. The tests “were run at low frequencies of 1.0, 
0.1 and 0.01 Hz to prevent any hysteretic heating.” [10]. As Mandell and Meier 
noted, “at higher frequencies there is an interaction of heating and mechanical 
effects, which … was intentionally avoided here”. In [10], both tensile cyclic loading 
and static experiments for cross-ply E-glass/epoxy laminates are presented. From the 
static experiments, one can determine the parameters A and B of formula (2).  The 
linear regression formula for the static fatigue test was obtained in the form: 
S= 369 – 16.5 log t. 
From this formula, we obtain the following values for A and B for the considered 
material: 

910*139.5=A  s; B/kT=0.0606. 
The S-N curves obtained by Mandell and Meier for different frequencies (0.01, 0.1, 
and 1 Hz), are presented in Table 1.  
Table 1. Regression formulas for S-N curves obtained in [10] 

Frequency, Hz Regression formulas for the S-N-Curves 
1.0 S=405 – 45.0 log N 
0.1 S=378 – 40.7 log N 

0.01 S=355 – 37.0 log N 
Figure 8 shows the S-N curve calculated on the basis of the developed model, and its 
comparison with the experimental data by Mandel and Meier. The deviation from the 
experimental curve is in the ranges up to 12%. Given the small amount of adjustable 
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parameters and the approximate type of the model, the difference between the 
theoretical results and experiments is acceptable. 
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Figure 8. Comparison of experiments and theory, for the case of frequency 

0.01 Hz.  
 
Using the formulas (13) and (14), one can estimate the effect of the wave shape 
(squared versus triangular) on the N-S curve: 

mtria

squar

B
kT

N
N

σ
2

=  
(28) 

Mandell and Meier [10] considered  the squared and triangular (spike) shapes of 
loading weaves, and obtained the following regression formulas for the S-N curves 
(f=0.1 Hz):  
Square wave: S=446 – 49.9 log N  (29) 
Spike loading: S=508 – 58.8 log N (30) 
 
The ratio between the values of N for squared and triangular loading is 1.09…1.12. 
Using the formula  (28), we can calculate this ratio. Substituting all the values, we 
have: 

=triasquar NN / 1.14…1.16. (31) 

Thus, the estimation on the basis of formula (28) gives the results which are very 
close to the experimental results.  
7. Conclusions 
On the basis of the kinetic theory of strength, a new approach to the modeling of 
material degradation in cyclic loading has been suggested. Assuming that not stress 
changes (as in [28-30]), but acting stresses cause the damage growth in materials 
under cyclic loading, we applied the kinetic theory of strength to model the material 
degradation in fatigue. The damage growth per cycle, the effects of the loading 
frequency on the lifetime and on the stiffness reduction in composites were 
determined analytically. It has been shown that the number of cycles to failure 
increases almost linearly and the damage growth per cycle decreases with 
increasing the loading frequency. 
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