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Abstract On the basis of the kinetic theory of
strength, a new approach to the modeling of mate-
rial degradation in cyclic loading has been sug-
gested. Assuming that not stress changes, but
acting stresses cause the damage growth in materi-
als under fatigue conditions, we applied the kinetic
theory of strength to model the material degrada-
tion. The damage growth per cycle, the effect of
the loading frequency on the lifetime and on the
stiffness reduction in composites were determined
analytically. It has been shown that the number of
cycles to failure increases almost linearly and the
damage growth per cycle decreases with increasing
the loading frequency.

Keywords Kinetic theory of strength · Fatigue ·
Damage · Lifetime · Frequency

1 Introduction

One of the oldest problems in the fatigue analysis
has been the analysis of the interrelations between
the loading conditions and the lifetime of materi-
als (number of the cycles to failure) (Suresh 1998;
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Palmgren 1924; Miner 1945; Paris et al. 1961;
Fatemi and Yang 1998). Among the analytical,
experimental and statistical approaches, used to
investigate this problem, one may list the concepts
based on the Wöhler curve and Basquin equation,
rain-flow counting, Palmgren-Miner’s rule of dam-
age accumulation, Paris law and different gener-
alizations of the fracture and damage mechanics
approaches The main challenge in most of these
works was to take into account explicitly the tem-
poral effects in fatigue, which do influence the life-
time of materials (Suresh 1998). However, many
of the underlying concepts and approaches used
either do not take into account the temporal effects
(as fracture mechanics), or are based on the data
analysis and averaging (as Wöhler curves and Paris
law) (Fatemi and Yang 1998).

In particular, the problem of the effect of load-
ing frequency on the damage growth and lifetime
of materials can be hardly explained in the frame-
work of the static concepts. As noted by Parsons
et al. (2000), “for different polymers, the crack
growth rate (expressed in units of length per num-
ber of cycles) may decrease, remain nearly con-
stant, or increase with increasing frequency”.
Hertzberg et al. (1975) studied the effect of test
frequency on polymer fatigue performance, seek-
ing to explain a diminution of fatigue resistance
with increasing cyclic frequency in unnotched test
samples, and the enhancement of fatigue resistance
in many polymers with increasing cyclic frequency



150 L. Mishnaevsky Jr., P. Brøndsted

in notched samples. As noted by Hertzberg et al.
(1975), contradictory trends in frequency-sensitive
materials properties are responsible for these dif-
ferences. The relative fatigue behavior reflects “a
competition between strain rate and creep effects”,
as well as the effect of β transition in polymers
(Hertzberg et al. 1975).

Takemori (1992) noted that the conclusions on
the frequency effects made on the basis of an analy-
sis of unnotched specimens are not transferable
on notched specimens case. Moskala (1993) also
noted that the fatigue resistance of the untough-
ened amorphous blend of polycarbonate was not
affected by test frequency, whereas the fatigue
resistance of the toughened blend increased with
increasing frequency. Mandell and Meier (1983)
studied load frequency effects for cross-ply E-glass/
epoxy laminates, carrying out tests with three fre-
quencies (0.01, 0.1, and 1 Hz), and observed that
the number of cycles increased with increasing load
frequency.

Saff, and other researchers also considered the
effect of frequency on the fatigue behavior (Saff
1983; Sun and Chan 1979; Rotem 1993). These
and other results were summarized in Hahn and
Turkgenc (2000) as follows: “at low frequency
ranges where there is negligible heat dissipation,
as the load frequency increases, cycles to failure
increase also. As higher frequency ranges are con-
sidered this increase is at a slower rate. When there
is excessive heat dissipation, however, a reverse
trend can be observed.”

One of the ways to analyze the time-dependent
effects on the fatigue crack growth is to consider
the crack growth rate as a superposition of fatigue
and creep components (Hertzberg et al. 1975;
Wnuk 1974). So, Lee et al. (2003) analyzed the
damage growth in polymer composite materials on
the basis of the fracture mechanics model by Wnuk
(1974). Using the transition from fracture to dam-
age mechanics concept, they derived the following
formula

dD/dN = c1(σ
2
max/D)m + (c2/f)(σ 2

max/D)n (1)

where c1, c2, m, n are the parameters of the mater-
ial.

The interrelations between the static and fatigue
failure was considered in several works (Miyano
et al. 1994; Case et al. 1998; Oh and Yoon 1995).

Miyano and colleagues (1994) demonstrated that
“the reciprocation law of time and temperature” is
applicable for both the static and fatigue strengths,
and that both the fatigue and static fracture modes
and the slope of the S–N curves remains the same in
the large temperature range. Oh and Yoon (1995)
derived a formula for the fatigue life using the
Zhurkov-type static life equation as well.

The purpose of this work is to investigate the
effect of the loading history in cyclic loading on
the damage evolution and lifetime of materials
using the kinetic theory of strength (Hertzberg
et al. 1975; Yokobori 1968, 1978; Mishnaevsky
1996, 1997; Hsiao 1989; Cherepanov 1974; Regel
et al. 1974) and the stepwise representation of the
loading variation during the fatigue cycles. As dif-
fered from the level crossing approach to the
fatigue modeling suggested by Holm and de Mare
(1988) and applied by Holm, de Mare and col-
leagues (Holm et al. 1995; Svensson 1996), we
assume here that not the stress changes, but the
acting constant stresses cause damage growth in
materials. This assumption has been confirmed
experimentally in many tests for static loading
(Regel et al. 1974), and can be therefore used as
a basis for the modeling of fatigue. Here only the
case of relative low loading frequency ranges is
considered, when the dynamic effects as well as
the heat dissipation do not play any role.

2 Kinetic model of failure applied
to the time-dependent loading

Let us consider a specimen under constant tensile
stress (Fig. 1a). It has been shown in many works
(e.g., Suresh (1998), Cherepanov (1974), Regel
et al. (1974), Miyano et al. (1994), Case (1998), Oh
and Yoon (1995), Holm and de Mare (1988), Holm
et al. (1995), Svensson (1996), Narisawa et al.
(1978)), that the lifetime of a specimen under con-
stant load is an exponential function of applied
stress and temperature:

tF = A exp
(
−B

σ

kT

)
(2)

where tF , time-to-fracture; σ , applied stress; a and
c, kinetic constants of material; k, Boltzmann con-
stant; T, temperature.
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Fig. 1 Schemas of the constant (a) and multistep (b)
loading of a specimen

This formula has been derived by several authors
on the basis of the analysis of the accumulation of
broken atomistic bonds whose breakage is caused
by thermofluctuational processes (Palmgren 1924),
or on the basis of the kinetic theory of failure
(Yokobori 1968, 1978). Zhurkov introduced a
kinetic concept of strength of solids, where time
to rupture follows an Arrhenius–Eyring law with
an energy barrier decreasing with increasing stress,
and the driving mechanism for subcritical dam-
aging processes is thermal activation (Palmgren
1924). Some versions of this formula were sug-
gested by Hsiao (1989), and Cherepanov (1974).
Oliveira (1998) further investigated and justified
the kinetic model of fracture theoretically. Regel
et al. (1974) carried out experimental investiga-
tions of this interrelation and determined material
parameters for this curve.

Consider now a more complex case of multi-step
loading, shown in Fig. 1b. Apparently, a failure of
a material is not a step-wise event after a lapse of
time, but continuous process of the defect accu-
mulation and degradation at the lower scale level.
In the case, shown in Fig. 1b, the failure does not
occur after each loading step (since the duration
of the steps is much lower than the time-to-failure
for a given constant loading). However, such multi-
step loading can lead to the failure as well as the
one long step loading. Following Mishnaevsky and
Schmauder (1997), Mishnaevsky (1998), let us
define the damage degree in a material R as a func-
tion of the relation between the remaining and the
total lifetime of an undamaged material

R = t/tF = 1 − trem/tF

= 1 − (trem/A) exp
(

B
σ

kT

)
(3)

where tF is determined by the formula 2, t, current
time (duration of loading); trem, remaining time
until failure. Thus, the total failure (t = tF) takes
place when the damage degree R reaches the criti-
cal value 1. When the load is first applied, the value
R is equal to zero. The residual lifetime of a speci-
men under loading decreases due to the formation
of defects.

Thus, in the case shown in Fig. 1b, the damage
parameter increases as:

R = R1 + R2 + R3 = t1
tF(σ1)

+ t2
tF(σ2)

+ t3
tF(σ3)

, (4)

where tF(σ ) is the function of the lifetime versus
the applied stress, given by the formula 2. The for-
mula 4 is in fact similar to the well-known Miner’s
rule.

Therefore, the residual lifetime of the material
after the loading shown in Fig. 1b is (assuming that
the specimen will be loaded by some constant load
σ4):

trem = tF(σ4)(1 − R). (5)

Using this model, we may study the effect of the
loading history on the residual strength of materi-
als. For the case of compressive loading, the para-
meters A and B in the formula 2 are different.

3 Fatigue of materials and frequency effect

Now let us consider fatigue of materials, given as
cyclic tension-tension loading, shown in Fig. 2. By
discretizing the loading curve, we can represent it
as the multi-step loading, which is in principle sim-
ilar to that shown in Fig. 1b. The model developed
in Sect. 2 is applicable to this type of loading.

Consider the effect of the loading frequency on
damage evolution in this case. Consider one half-
cycle of the curve on Fig. 2. We represent the time-
dependence of the loading in the form:

σ = at, (6)

where a = dσ /dt = rate of the loading growth at the
half-step.
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Fig. 2 Cyclic loading: representing of a half-cycle as a
multistep loading

In this case, the stress amplitude is σm = atcycle,
where tcycle, one half cycle duration, and the rela-
tion between the stress amplitude σm and the load-
ing frequency f is given by formula:

f = 1/2tcycle = a/2σm (7)

Discretizing the half-cycle curve into M steps, we
determine the damage increase for each ith step
as:

Ri = ti/tF(σi) = (ti/A) exp(Bσi/kT), (8)

where ti = tcycle/M, and is independent on i, σi =
aiti.

The damage increase as a result of the half-cycle
is:

Rc =
M∑
i

Ri =
M∑
i

(tcycle/MA) exp(aBitcycle/kTM).

(9)

Taking into account the formula 7, we obtain the
relationship between the damage growth in each
cycle Dc and the frequency of loading:

Rc =
M∑
i

1
2fMA

exp

(
aiB

2fMkT

)
(10)

One can see from this formula that the damage
growth rate is a decreasing function of the loading
frequency.

Transforming the summation from Eq. 10 into
integration (M → ∞, ti →dt), we have from Eq. 8:

Rc =
M∑
i

Ri =
M∑
i

(ti/A) exp(B at/kT)

= 1
A

∫
exp

(
aBt
kT

)

= (kT/ABa) exp(aBtcycle/kT), (11)

and

Rc ∝ 1
f

exp(aB/2fkT). (12)

If, according to the Miner’s rule, we define the
amount of cycles to failure as NF = 1/2Rc, one may
see from this formula that the number of cycles to
failure increases with increasing the loading fre-
quency.
For instance, if we take A = 7.0 × 106 s (=200 h),
B = 5.5 E−29 J/Pa, time to failure tF (at the load
200 MPa) is about 100 h. For this case, we calcu-
lated the dependency of the number of cycles to
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Fig. 3 The damage increase per cycle (a) and the amount
of cycles to failure (b) plotted versus frequency of loading
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failure on the frequency of cyclic loading. Figure 3
gives the curves of the damage increase per cycle
and the amount of cycles to failure plotted versus
frequency of loading (σm = 300 MPa, T = 270 K).

Using the formulas 10–12, we can determine the
Wöhler (S–N) curve of the material. Defining the
failure condition as 2RcN = 1, we obtain:

N = ABfσm

kT
exp

(
−Bσm

kT

)
(13)

This formula is obtained for the case of the trian-
gular loading wave, shown in Fig. 2. For the case of
the squared wave, the S–N formula takes the form:

N = 2fA exp

(
−Bσm

kT

)
(14)

where it is assumed that the duration of each load-
ing is 1/2f.

It is of interest that the total time to failure is
constant: i.e., for the linear damage accumulation
law, the frequency of loading does not affect the
total time to failure.

For the sake of clarity, we would like to list and
to summarize the assumptions, on which the model
is based. The frequency of cyclic loading must be
sufficiently low that both dynamic and thermal
effects are negligible. The damage in the material
is controlled by kinetic processes, and is therefore
proportional to the duration of loading (weighted
by the applied stress in each loading moment). In
order to obtain closed-form expressions, we made
several simplifying assumptions: the evolution of
damage occurs linearly with time, and relatively
low number of cycles. These assumptions are not
inherent to the model and can be simply removed,
if the model is generalized.

4 Stiffness reduction due to the microcracking
and the lifetime of a material

In this paper, we used the definition of the dam-
age degree in the material as a parameter of resid-
ual lifetime. One can note here that the damage
parameter in the continuum damage mechanics is
usually assigned two meanings: first, microcracks
density, and second, the closeness of the mater-
ial to failure. The conditions of failure are formu-
lated usually as an equality between the damage

parameter and some critical value (see for exam-
ple, Lemaitre (1992)). Kachanov (1987) has for-
mulated two meanings of damage parameter as
follows: “reduction of the effective elastic stiff-
ness” and “the extent of progression towards the
final fracture.” The latter meaning corresponds evi-
dently to the parameter R (relative residual life-
time), defined in the Sect. 2.

Let us now establish relationships between the
value R, defined in the Sect. 2, and the damage
parameter D, defined via the microcrack density
or the deterioration of elastic stiffness.

The damage growth law, derived by Lemaitre
(1992), has a form:

dD
dt

= C
(1 − D)2 , (15)

where C, a function of the stress state and material
parameters; C = (σ 2

eqHRv/2Es)
√

(2/3)ε̇p, i, jε̇p, i, j;
s, energy strength of damage (material constant);
H = 1, if the accumulated plastic strain reached the
damage threshold; and H = 0, otherwise; ν,
Poisson’s ratio; Rv, triaxiality function; Rv = (1 +
ν)/3+3(1−2ν)(σm/σeq)2. The Lemaitre’s damage
parameter is defined as the relative reduction of
the load bearing section of a specimen, and can be
determined as

D = 1 − Edam/E,

where Edam and E, elasticity moduli of undamaged
and damaged material. Integrating the Eq. 15, we
derive the following cubic equation:

D3 − 3D2 + D −
∫

Cdt = 0, (16)

Taking the value C to be constant (over the load-
ing period, compare Fig. 1a), we may substitute t
instead of

∫
Cdt in this formula.

Solving this cubic equation, we obtain the dam-
age parameter D as a function of loading time:

D = 1 − (1 − Ct)1/3 = 1 − (1 − CRtF)1/3, (17)

The reduction of relative stiffness at each cycle is
therefore:

dD/dN = Dc = 1 − (1 − C/2f)1/3 (18)

Similarly to the results by Lee et al. (2003), the
increase of damage D in each cycle is the more, the
less the frequency of loading.
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Assuming that if D = 1, R = 1, the formula 17 is
reduced to

D = 1 − (1 − R)1/3, (19)

Using Eq. 17, we may relate the reduction of the
material stiffness due to the microcracking, and the
relative reduction of lifetime:

Edam = E(1 − CRtF)1/3. (20)

Apparently, the stiffness of the material decreases
when the remaining lifetime decreases.

Figure 4 shows the value of the Lemaitre dam-
age D (relative reduction of the material stiffness)
plotted versus R. One can see that while the
remaining lifetime is almost proportional to the
stiffness of damaged material at the initial stages
of the damage evolution, the microcrack density
grows at the last stages of destruction with almost
no effect on the remaining lifetime.

It is of interest to compare the curve on Fig. 4
with the results on the damage versus percent of
life for fiber reinforced polymer composites
(Reifsnider et al. 1990). The linear-plateau-linear
D-R curve reflects three stages: the multiple fiber
cracking (first linear part), crack coupling and
delamination growth (plateau) and fracture (the
second linear part). In our case, the intensive frac-
turing of the main bearing elements (fibers) at the
initial stage of loading, leading to the quick weak-
ening of the material, is not included into the model
(the model is developed for a general case, not for a
fiber reinforced composites). That is why the curve
shown in Fig. 4 consists of two parts: slow, plateau-
like material degradation (accumulation of defects,
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Fig. 4 Lemaitre damage D (relative reduction of stiffness)
plotted versus R (1 − ratio of the remaining/total lifetime)

first without interaction, then with weak interac-
tion), passing into the quick, autocatalytic growth
of largest crack(s).

5 Composite materials

On this stage, let us estimate the effect of loading
on the stiffness of the composites.

We consider a long fiber reinforced compos-
ite loaded along the fiber direction (see Fig. 5). In
this case, the stress in the material is determined,
according to the Voigt equation, by the formula:

σcomp = vfσf + σmvm, (21)

where vf, vm—volume content of fibers and matrix,
respectively. Assuming that the fibers are linear
elastic, and the matrix is viscoelastic, we have:

σcomp = vfEfεcomp + σm(εcomp, Em)vm, (22)

where σm(εcomp, Em), stress as a function of the
strain. If the matrix behavior can be modeled as
a Kelvin-Voigt element, σm = Emεcomp + βε̇comp,
where β, damping coefficient.

Substituting (22) into (21), we have:

σcomp = (Ecomp,0 − DfEf0vf − DmEm0vm)εcomp

+βε̇compvm, (23)

where Ecomp,0, initial Young modulus of the non-
damaged composite. One may see that if only fibers
become damaged (Dm = 0), the stresses in the

Fig. 5 Fiber reinforced composite: model loading
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material are higher when the viscosity of the mate-
rial increases.

Let us consider the effect of the availability of
multiple constituents in the composite on its life-
time. The formula 1 was derived on the basis of
both experimental data and probabilistic reason-
ings (accumulation of broken bonds in the mater-
ial).

Now, we consider the failure of macroelements
of the material (fibers and matrix between fibers)
as random events as well. As “elements” in this
case, fibers and the layers of matrix between the
nearest fibers are taken. At this stage of work,
only composite with strong interfaces are modeled,
thus, only fibers and the section of matrix between
fibers can fail.

According to the reliability theory, the reliability
function (which is defined as a probability that an
object does not fail in the time interval (0, t)) is
calculated as:

Rel(t) = 1 − ProbF = exp(−t/tF)

= exp
[
−(t/A) exp

(
B

σ

kT

)]
, (24)

where ProbF, probability that an object fails in
the time interval (0, t) (Mishnaevsky 2007). One
should note that the formula 24 is derived on the
basis of the assumption about exponential proba-
bility law for the time-to-failure. While this assump-
tion has some justification (e.g., (Mishnaevsky
1998)), other probability laws can be considered
here as well.

Let us take a matrix between m fibers and the
fibers around it, as a unit cell of material. In the
case of the cell loaded along the fiber direction, it
may be considered as a parallel system made from
m + 1 elements. For a simplest cell with m = 3 fibers
and the matrix between them, shown in Fig. 6, the
reliability function is given by formula:

Relsys = 1 − (1 − Relf)
m(1 − Relm). (25)

Assuming that all the elements of the system
fail independently (which is not correct, of course,
due to the load redistribution after a fiber or the
matrix become damaged (Phoenix and Beyerlein
2000; Mishnaevsky 2007)), we can determine the
mean time to failure of the parallel system under
constant loading:

Fig. 6 Parallel system with three elements: matrix with
three fibers around it (side view and section)

tF = tFm + βtFf − [1/tFm + 1/(βtFf)]−1,

where β =
m∑

i=1

(1/i)

Apparently, the relation with Eq. 25 is correct for
the constant stress applied during the time t (the
case shown in Fig. 1a). Consider now again the case
shown in Fig. 1b. In this case, assuming the expo-
nential reliability function, we have for a single
fiber:

Rel(t1+t2+t3) = exp

[
− t1

tF(σ1)
− t2

tF(σ2)
− t3

tF(σ3)

]

= exp(−R1 − R2 − R3), (26)

For the case of the fatigue loading (considered in
the Sect. 3), the probability that a single fiber does
not fail during the half-cycle of fatigue loading, is
given by the formula:

Relf(tcycle)= exp(−Rc)

= exp

[
−

M∑
i

(ti/Af) exp(Bfσf, i/kT)

]
. (27)

where the index “f” means fiber. Substituting the
index “m” for “f”, we can obtain a similar formula
for the matrix section between the fibers.

Substituting Eq. 27 into Eq. 25, and taking take
into account the formulas 21–22 and the load
sharing (following the effective stress concept
(Lemaitre 1992)), we can calculate the reliability
(probability of non-failure) of a given system.
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To give an example of the effect of the loading
frequency on the reliability of the m fibers-matrix
system after many cycles of loading, let us con-
sider the following case. The matrix material, con-
sidered above, is reinforced by fibers of another,
stronger material (with the parameter Af = 2Am,
where Am = A = 7.0 × 106 s is equal to the value
given above; all other parameters the same). Tak-
ing m = 4, σm = 300 MPa, T = 270 K, we can obtain
the reliability function after 107 loading cycles of
loading as a function of the loading frequency. Fig-
ure 7 gives the curve for the considered model case.

6 Comparison with the experimental data

Let us compare the results of the kinetic model
of fatigue damage with some experimental results.

Table 1 Regression formulas for S–N curves obtained in
Mandell and Meier (1983)

Frequency (Hz) Regression formulas for the
S–N-Curves

1.0 S = 405 − 45.0 log N
0.1 S = 378 − 40.7 log N
0.01 S = 355 − 37.0 log N

The model, developed above, is applicable to the
case when neither dynamic effects nor heat dissi-
pation influence the damage growth in the mate-
rials. Thus, we use the experiments by Mandell
and Meier (1983) to verify this model. Mandell
and Meier carried out the tension fatigue tests
of plates constructured of eleven unidirectional
plies of alternating 0 and 90◦. The plates were
subject to square and spike loadings. The tests
“were run at low frequencies of 1.0, 0.1, and 0.01 Hz
to prevent any hysteretic heating.” Mandell and
Meier (1983). As Mandell and Meier noted, “at
higher frequencies there is an interaction of heat-
ing and mechanical effects, which . . . was intention-
ally avoided here.” In Mandell and Meier (1983),
both tensile cyclic loading and static experiments
for cross-ply E-glass/epoxy laminates are presen-
ted. From the static experiments, one can deter-
mine the parameters A and B of formula 2. The
linear regression formula for the static fatigue test
was obtained in the form:

S = 369 − 16.5logt.

From this formula, we obtain the following val-
ues for A and B for the considered material:

A = 5.139 × 109 s; B/kT = 0.0606.

The S–N curves obtained by Mandell and Meier
for different frequencies (0.01, 0.1, and 1 Hz), are
presented in Table 1.

Figure 8 shows the S–N curve calculated on the
basis of the developed model, and its compari-
son with the experimental data by Mandel and
Meier. It should be noted that S–N curves are plot-
ted with the independent variable (stress) on the
y-axis. If we calculate the error on the basis of a
fixed stress, not a fixed number of cycles to failure
(what is the correct approach in this case), the error
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(overprediction) is up to 100% (i.e., for a stress of
∼250 MPa the data indicates N = ∼35 whereas the
model claims N = ∼70). Practically, it means that
while the developed approach allows the qualita-
tively correct prediction of the tendencies and S–N
curves, a correction factor should be introduced to
use this model for design purposes.

Using the formulas 13 and 14, one can estimate
the effect of the wave shape (squared vs. triangular)
on the N-S curve:

Nsquar

Ntria
= 2kT

Bσm
(28)

Mandell and Meier (1983) considered the squared
and triangular (spike) shapes of loading weaves,
and obtained the following regression formulas for
the S–N curves (f = 0.1 Hz):

Square wave : S = 446 − 49.9 log N (29)

Spike loading: S = 508 − 58.8 log N (30)

The ratio between the values of N for squared and
triangular loading is 1.09 . . . 1.12. Using the for-
mula 28, we can calculate this ratio. Substituting
all the values, we have:

Nsquar/Ntria = 1.14 . . . 1.16. (31)

Thus, the estimation on the basis of formula 28
gives the results which are very close to the exper-
imental results.

7 Conclusions

On the basis of the kinetic theory of strength, a
new approach to the modeling of material degrada-
tion in cyclic loading has been suggested. Assuming
that not stress changes (as in Holm and de Mare
(1988); Holm et al. (1995); Svensson (1996)), but
acting stresses cause the damage growth in materi-
als under cyclic loading, we applied the kinetic the-
ory of strength to model the material degradation
in fatigue. The damage growth per cycle, the effects
of the loading frequency on the lifetime and on the
stiffness reduction in composites were determined
analytically. It has been shown that the number of
cycles to failure increases almost linearly and the
damage growth per cycle decreases with increasing
the loading frequency.
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