WP 1B3: Smart Rotor

Mid-term results

Prof.dr.ir. Gijs van Kuik

Thanks to:

Teun Hulskamp Harald Bersee Thanassis Barlas

Distributed control along the blade

Controlling the blade load by active control of the aerodynamics with spanwise distributed devices

So: We want this control capability ...

...without compromising the robustness of current blade technology

What are the topics?

"Smart" = sense, compute a reaction and react.

So the issues/research areas are:

- ≺ Aerodynamics
- → Structural integration/Actuators
- ≺ Sensing
- → Control

Moreover, a solution is wanted, that is integrated in the current functionality and/or structure of a HAWT blade

Experiment to show potential

View from the bottom:

Present status

Three main lines:

- ≺ Experiments
- ✓ Integration by means of rotor design
- → Detailed analyses

Experiment: Model rotor in wind tunnel

≺ 2 bladed 1.8m diameter rotor in new early Open Jet Facility of TU-Delft, February 2009

Integration by Design: requirements for smart rotors

- ≺ Analysis of Upwind reference turbine, required flap angles for load alleviation.
- → Aerodynamic surfaces (type, length, amplitude, bandwidth) max +-15 deg. deflection of a 10%c flap, suffices to alleviate yaw loads, EOG, EDC locally
- → Blade structure (fatigue, stability, lay-out)
- → Actuators (deflection, bandwidth, structural integration)
- ≺ Sensors (signal type, placement)
- ≺ Controllers (control strategy, hardware)
- ≺ Interfaces (type, power)

Detailed analysis by partners

- → DUWIND, TU-Delft (NI)
- → Risø National Laboratory (DK)
- ✓ Energy research Centre of the Netherlands -ECN (NL)
- ✓ University of Stuttgart (D)
- ≺ LM Glasfiber A.S. (DK)
- ≺ Fundación Robotiker (E)
- ✓ VTT Technical Research Centre of Finland (SF)
- ✓ Instytut Podstawowych Problemow Techniki -PAN (PL)
- ≺ Institute of Physics, Academy of Sciences of the Czech Republic (CZ)

Adaptive blade-hub connection to alleviate extreme loads

Device with very fast tunable torsional stiffness, by rheological fluid

Simulation EOG

Prelim. results without reconnection yet

Aerodynamic experiments on airfoil with flap

Anisotropic Blade Design

- Lower loads by coupling blade elastic deflections
- Carbon in Spar Caps (to increase coupling potential)
- Modifications of the unidirectional fiber material
- Flap twist (to feather) coupling shows highest potential
- However, loads tend to move to other signals: flap ↓ edge↑
- Currently developing blade optimization to overcome this

Sensors and Control Strategy:

→ Based on simulations, a 2-axis DC accelerometer with +/- 5g is required.

≺ Several control systems located close to the local signals (sensors, actuators and controls). This is preferred

→ Requires the main control algorithm to be split into separate ones, for each flap.

≺ Suitable when sensors are placed close to the flap.

✓ If a distributed control algorithm is not possible => Centralized Control..

Shape Memory Alloy

SMA as damper

- Passive vibration damping by the energy dissipation due to the cyclic stress-induced mar-tensitic transformation (SMT).
- Experimental evaluation of damping
- Harmonic excitation in the strain control regime
- Environmental temperature around wire is actively controlled
- Positive results

SMA material modeling in FEM

Implementation of the iRLOOP model of ASCR in Abaqus

Results with SMA wire only:

Superelasticity

Small loops

Results of a laminate with embedded

SMA wires: Matrix, Shell surface —

Synthetic Jets

Numerical:

- ✓ Test of turbulence models
- → Parallelization of the URANS met
- → Parameter study.

Experimental:

- ≺ Naca 0018 model, University Twente silent wind tunnel, actuation by loadspeakers
- ← First test of synthetic jet from slits on suction side close to the leading edge (boundary layer separation control).
- ≺ Towards pitch control / camber control.

Thank you

There must be questions.....

Design of Wind Tunnel model

- Scaled blade dynamics
- Scaled periodic and stochastic wind disturbances
- ≺ Real-time controller

