UpWind

Flemming Rasmussen Aeroelastic Design Wind Energy Department Risø DTU

WP 2.1 Structural dynamics, large deflections & non-linear effects

Approach

- Identification of important non-linearities in large wind turbines
- Challenge: predict blade torsional deformation in loaded case

Bending-Torsion coupling

When blade flap curvature w'' becomes large, bending moment $M\zeta$ contributes significantly to blade torsion moment My.

Tip torsional rotation, IEA-comparison, 8 m/s

WP 2.1 Non-linear effects (analytical study)

Additions to the baseline, 1st-order, model

Formulation of dynamic equations in the deformed state (same structural couplings as in baseline but 2nd-order kinematics and dynamics)

(2nd order beam-0)

- Tension torsion coupling terms (2nd order beam-1)
- Bending torsion coupling terms(2nd order beam-2)
- Pre-twist torsion coupling term (2nd order beam-3)

WP 2.1 Non-linear effects

Linear vs. non linear beam model analysis, NTM at 11.4 m/s

WP2.2 Advanced aerodynamic models

Objectives

 to identify the limitations in the engineering aerodynamic modeling in BEM type codes

Approach

 inter comparison of results of models of different complexity applied on MW rotors, RWT- 5MW

Simulation cases

- ✓ uniform inflow on RWT turbine (stiff model)
- ✓ strong wind shear in inflow
- ✓ unsteady inflow (turbulent)- not yet performed

Wind speed with height, night- day, Høvsøre

from http://veaonline.risoe.dk

SIXTH FRAMEWOI

Wake pattern, CFD with strong inflow shear

WP2.2 Blade normal force

8 m/s -- strong inflow shear - exponent 0.55

blade 90 deg.

blade 270 deg.

WP 2.3 Advanced control features and aerodynamic devices

Approach:

• Develope detailed models for analysis of a few promising flow control concepts (in close corporation with WP 1A5).

• Deformable camberline.

Dynamic Stall: Harmonic Alpha and Beta

Blue: Alpha and Beta in phase Black: No Beta Red: In counter-phase (180° shift)

UpWind

Aeroelastic simulation of load reductions with active trailing edge flap

Reduction / Pitch / Power	7m/s K _α =0	7m/s K _α =1	11m/s	18m/s
10 min. max blade1 , flapwise root moment	11.8%	6.5%	16.0%	24.0%
10 min. max tower , flowwise root moment	8.8%	2.6%	6.5%	15.9%
Blade1, equivalent flapwise root moment	38.1%	36.2%	45.5%	47.9%
Tower, equivalent flowwise root moment	33.2%	31.9%	20.8%	33.3%
Pitch rate, standard deviation	n/a	n/a	10.9%	19.0%
Mean power prod. (+loss) without DTEG	1375KW	1375KW	4694KW	5291KW
Mean power prod. (+loss) with DTEG	1364KW	1395KW	4682KW	5300KW
Percent change in power	-0.8%	+1.5%	-0.2%	+0.2% Wind
μισαυσιοπ				

SIX

WP 2.4 Aeroelastic stability and total damping

Frequency and damping for a non-deflected and a deflected blade (red), respectively. (5 MW turbine)

Black: non-deflected blade Red: deflected blade

Effect of large blade deflections on aeroelastic stability limits

Conclusions:

- No significant effect on flutter limit!
- Decreased aerodynamic damping of edgewise bending mode

WP 2.5 Computation of aerodynamic noise– coupled CFD-CAA models

Results: VTE_kav, CI=0.7, Noise Spectra

UpWind

Transition detection: Risø-B1-18 transition points

WP2 Aerodynamics and Aeroelastics

Summary

- Bending-torsion coupling is important
- Inflow shear is non-trivial
- Large load reductions with variable trailing edge
- Stability analysis including non-linear effects: stability characteristics for some modes are influenced
- Noise prediction: Boundary layer predictions and measurements

