

Transmission & Conversion

- Workpackage activities and findings -

Mid Term Workshop Thursday 19th October 2008, Brussels Jan Hemmelmann, GE Global Research

Outline

- Mechanical Transmission
 - Comparison of turbine measurements with simulation

✓ Generators

- Comparison of different generator configurations
- Electromagnetic optimization
- Optimization of the mechanical structure

Power Electronics

Converter topologies

Multi-body simulation platform

Sensors locations: measurement, simulation

Sensors locations within gearbox

SIXTH FRAMEWORK PROGRAMME

Torque arm displacement - longitudinal

Estop

Low speed shaft displacement - axial

Pitch error & misalignment of main shaft

Pitch error and misalignment produces torque arm displacement of frequency P_rotor

Mid Term Workshop, 9th Oct 2008, Brussels – WP1B2 Transmission & Conversion

Torque arm displacements show:

Pitch error and misalignment of main shaft produces gearbox displacement of frequency P_rotor

SIXTH FRAMEWORK PROGRAM

Generators

✓ Aalborg University:

Comparison of different generator configurations

✓ Delft University of Technology:

Electromagnetic optimization of direct-drive generators

✓ University of Edinburgh:

Optimization of the mechanical structure of direct-drive generators

System cost / AEP per cost

PM synchronous

Wound rotor synchronous

PM synchronous single gear stage

PM synchronous three gear stages

Wound rotor induction single gear stage

Wound rotor induction three gear stages

Squirrel cage induction three gear stages

- system cost includes:
 - active material
 - structural
 - gearbox (if present)
 - converter
 - other electrical subsystem

PMSG DD

EESG DD

PMSG 1G

DFIG 1G

PMSG 3G

DFIG 3G

SCIG 3G

Selection of generator type

For active mass reduction:
 Concept with short flux path required

Radial Flux & Axial Flux PM machine: limited

Transversal Flux PM machine: potential

TUDelft

plural module concept

Analytical design procedure developed to assess TFPM machine.

Rough design of 10 & 20 MW direct-drive RFPM generators

Note: 2, 3, 5 MW : McDonald et al (ICEM2006)

UpWind

Optimization of the mechanical structure of direct-drive generators

- ✓ The concept of 'structural' mass
 - Material required to maintain airgap, many forces at work
- The formulation of design tools to estimate the structural material
 - electromagnetically active and structural material must be simultaneously optimized
- The search for optimal shapes for these generators
 - shape optimization to find the 'best' mechanical structures

NIVE

Power Electronics - Converters

- ✓ ISET: Neutral point clamped converter
- ✓ ROBOTIKER: Matrix converters
- ✓ GE Global Research: Interleaved converter

Power Converter Summary

✓ NPC

- Industry standard topology
- Good controllability and good performance under grid-faults
- Redundancy is required against semiconductor breakdown issues
- ✓ Matrix Converter
 - It is not a mature technology yet
 - Poor fault-ride-through capability against grid disturbances
 - Fault tolerant
- ✓ Interleaved Converter
 - Fault tolerant (only a power downgrade is required)
 - Good fault-ride-through capability against grid disturbances
 - Good controllability

Conclusions

- Simulation tool for full flexible turbine simulation has been developed and compared against measurements
- \prec First step of comparison is modeling the right effects / defects
- Simulation tool helps to quantify defects
- Generator topologies have been studied, compared and optimized in terms of electromagnetics and mechanics
 Models for multi-parameter optimization have been developed
- Power converter topologies have been compared and optimized
 No barriers for up-scaling in sight, no clear winning technology

