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Abstract: The investigations described in this technical report were performed in the frame of Task 3.2 “Micro-
mechanics-based material model” of Work-Package WP3 “Rotor Structure and Materials” of the UPWIND project. 
Numerical micromechanical investigations of the mechanical behavior and damage evolution of glass fiber 
reinforced polymer matrix composites are presented. A program code for the automatic generation of 3D 
micromechanical unit cell models of composites with damageable elements is developed, and used in the 
numerical experiments. The effect of the statistical variability of fiber strengths, viscosity of the polymer matrix as 
well as the interaction between the damage processes in matrix, fibers and interface are investigated numerically. 
It is demonstrated that fibers with constant strength ensure higher strength of a composite at the pre-critical load, 
while the fibers with randomly distributed strengths lead to the higher strength of the composite at post-critical 
loads. In the case of randomly distributed fiber strengths, the damage growth in fibers seems to be almost 
independent from the crack length in matrix, while the influence of matrix cracks on the beginning of fiber cracking 
is clearly seen for the case of the constant fiber strength. Competition between the matrix cracking and interface 
debonding was observed in the simulations: in the areas with internsive interface cracking, both fiber fracture and 
the matrix cracking are delayed. Reversely, in the area, where a long matrix crack is formed, the fiber cracking 
does not lead to the interface damage. The conclusions of the computational analysis are compared with 
experimental data from literature. 
 



UPWIND : COMPUTATIONAL MODEL OF DAMAGE  
   

Deliverable 3.2.1 

 

Contents 
 

 
1. Introduction ........................................................................................................... 4 
2. State-of-the art: Modelling of strength and damage of fiber reinforced composites
 4 
3. Automatic generation of 3D FE unit cell models of composites and modeling of 
damage evolution ........................................................................................................... 5 

3.1 Automatic generation of 3D FE models of FRCs: “Program “Meso3DFiber”..... 5 
3.2 Damage modeling: fiber cracking and interface damage. ................................. 6 
3.3 Subroutine for damage simulation..................................................................... 6 
3.4 Properties of phases.......................................................................................... 6 

4. Computational experiments: Effect of phase properties on the strength and 
damage behavior of glass fiber reinforced polymer composites..................................... 8 

4.1 Damage evolution in composites with randomly distributed fiber strengths ...... 8 
4.2 Effect of the statistical variability of fiber strengths on the damage evolution in 
composites ................................................................................................................ 10 
4.3 Effect of the viscosity of the matrix on the damage evolution.......................... 12 

5. Influence of defects in the composites on the strength and damage resistance: 
Numerical analysis........................................................................................................ 13 

5.1 Effect of matrix defects on fiber cracking......................................................... 13 
5.2 Matrix defects and their influence on interface damage .................................. 17 
5.3 Interface defects and their influence on fiber cracking .................................... 19 
5.4 Competition between damage modes in composites ...................................... 22 

6. Conclusions ........................................................................................................ 23 
 
 
 
 
 
 

STATUS, CONFIDENTIALITY AND ACCESSIBILITY 

Status  Confidentiality  Accessibility 

S0 Approved/Released   R0 General public   Private web site  

S1 Reviewed   R1 Restricted to project members   Public web site  

S2 Pending for review   R2 Restricted to European. Commission   Paper copy  

S3 Draft for commends x  R3 Restricted to WP members + PL x    

S4 Under preparation   R4 Restricted to Task members +WPL+PL     
 

PL: Project leader WPL: Work package leader TL: Task leader 

 
 
 
 

 



UPWIND : COMPUTATIONAL MODEL OF DAMAGE  
   

Deliverable 3.2.1 

1. Introduction  
Glass fiber-reinforced polymer (GFRP) composites are widely used in the low-weight 
constructions, due to the high strength of glass fibers, as well as due to the availability of 
efficient and low cost production technologies of the materials. Unidirectional composites with 
epoxy matrixes, which have better mechanical properties than the polyesters and vinyl resins, 
are often used in the aerospace and wind energy applications. The strength and damage 
resistance of composites can be predicted and ultimately improved if the effects of the 
properties of fiber, matrix and interfaces on the mechanical properties and strength of 
composites are known.  
The purpose of this work is to develop computational tools for the numerical analysis of 
deformation and damage behavior of composites, and to analyze the damage mechanisms and 
the microstructure-strength relationships of glass fiber reinforced polymer matrix composites.   
 
2. State-of-the art: Modelling of strength and damage of 

fiber reinforced composites 
Several modeling approaches are traditionally used to simulate the damage and failure of fiber 
reinforced composites. Among them, one can differentiate the following main groups [1]: 

• analytical models (often based on the shear lag model by Cox [2], and used to 
analyze the load transfer and multiple cracking in composites): e.g, break influence 
superposition (BIS) technique by Sastry and Phoenix [3], Green function model by 
Curtin and colleagues  [4], etc.,  

• fiber bundle model (FBM) developed initially by Daniels [5], and further improved and 
generalized by members of Herrmann’ group at the University of Stuttgart, Germany [5-
6],  

• fracture mechanics-based models (often applied to the case of brittle matrix and fiber 
bridging, see the classical works by Marshall, Evans, Cox, Budiansky [7, 8], McCartney 
[9], etc.), 

• continuum damage mechanics based models (Allen et al. [14], Hild and colleagues 
[11], etc.), and, finally,  

• numerical continuum mechanical (often, finite element based) models [12-19, see 
also reviews 1, 20-21].  

The analytical methods (shear lag based, LEFM based, and other analytical models, etc.) are 
applicable mainly to the linear elastic material behavior and relatively simple, periodic 
microgeometries. The generalization of these approaches to the non-linear material behavior, 
random and evolving microstructures and complex microgeometries can be rather difficult in 
many cases. In these cases, numerical versions of the analytical models, or continuum 
mechanical models solved by numerical discretization (finite element method, finite differences, 
etc.) are used. The advantage of the continuum mechanical models are that they do not include 
inherent basic assumptions, which may or may not hold for each new problem (as different 
from, e.g., shear lag based or fiber bundle based models). The continuum mechanical methods 
allow simple integration of the non-linear phase behavior, evolving microstructures, ideas of the 
continuum damage mechanics and fracture mechanics as well as probabilistic aspects of the 
composite behaviour. 
Let us review some works on the continuum mechanical/numerical analysis of deformation 
and damage of unidirectional long fiber reinforced composites.  
In a series of works [e.g., 12, 13]., the effect of the fiber arrangement on the deformation 
and overall behavior of composites was simulated using unit cell models with different 
(square edge-packing, diagonal-packing and triangle-packing [12], and clustered and even non-
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regular [13]) fiber arrangements. Babuška et al. [14] obtained a solution for the stress 
distribution in a 2D linear elastic problem with two fibers, using p-version of FEM. Then, they 
considered homogenization problem with hundreds of fibers, and obtained the stress 
distributions, histograms of the stress distribution and the relationships between effective 
stiffness coefficient and the volume fraction of fibers. Using unit cells with different fiber 
arrangements, Asp et al. [15] studied numerically the failure initiation (yielding and cavitation-
induced brittle failure) and the effect of the interphases layer properties on the transverse failure 
in the polymer composites. Vejen and Pyrz [16] implemented the criteria of pure matrix cracking 
(strain density energy), fiber/matrix interface crack growth (bi-material model) and crack kinking 
out of a fiber/matrix interface into their own finite element package, and obtained numerically 
the crack paths for different fiber distributions.   

Sherwood and Quimby [17] modeled damage growth and the effect of the interface bonding 
strength in long fiber reinforced composites, using the non-linear time-dependent material 
model of the matrix.  Considering several cases of the interface bonding (perfectly bonded 
interface, weakly bonded interface or completely debonded interface), they observed that the 
mechanical response of the composite with completely debonded interface is controlled by the 
mechanical behavior of the matrix, while the response of the cross-ply composite is controlled 
by the deformation and damage of fibers. Zhang et al. [18] studied toughening mechanisms of 
FRCs using a micromechanical model (“embedded reinforcement approach”), taking into 
account both fiber bridging and matrix cracking. They demonstrated that the strong interfaces 
can lead to the lower toughness of the composites. González and LLorca [19] developed a 
multiscale 3D FE model of fracture in FRCs, which incorporated three damage mechanisms 
(plastic deformation of the matrix, brittle failure of fibers and frictional sliding on the interface).  It 
was assumed that the interface strength is negligible, and that the fiber/matrix interaction is 
controlled by friction. The simulation results were compared with experiments (load-CMOD 
curve), and a good agreement between experimental and numerical results was observed. 
Summarizing this short overview, one may state that the continuum mechanical finite elements 
models allow the incorporation of many different features of the nonlinear material behavior and 
the analysis of the interaction of available and evolving microstructural elements. More detailed 
overviews of the models of damage and fracture of fiber reinforced composites are given 
elsewhere [1, 21]. 

In the following work, we employ the continuum mechanics based, micromechanical, numerical 
methods to simulate the damage evolution in unidirectional, glass fiber reinforced polymer 
composites, and to analyze the effect of phase properties and the interaction between different 
damage modes in composites.  

 

3. Automatic generation of 3D FE unit cell models of 
composites and modeling of damage evolution  

 

3.1 Automatic generation of 3D FE models of FRCs: “Program 
“Meso3DFiber”.  

A special program code “Meso3DFiber“ [1], which allows to automate the generation of 3D 
micromechanical finite element models of composites, was developed. The program, written in 
Compaq Visual Fortran, generates a command file for the commercial software MSC/PATRAN. 
The parameters of the model (volume content and amount of fibers, probabilistic/constant 
distributions of fiber radii, availability of interphase, etc.) are introduced interactively. The fibers 
in the unit cells were placed randomly in X and Y directions, using the random number 
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generator. The command file is played with PATRAN, and a 3D microstructural (unit cell) model 
of the composite with pre-defined parameters is generated. The finite element meshes are 
generated by sweeping the corresponding 2D meshes on the surface of the unit cell.  
Figure 1 shows a micrograph of fracture surface of an unidirectional fiber reinforced composite 
with failed fibers (left) and an example of the generated FE models with 20 fibers, and removed 
layers of potential fracturing (right).  

3.2 Damage modeling: fiber cracking and interface damage.  
In order to model the fiber cracking, we used the idea of introducing potential fracture planes (in 
form of damageable cohesive elements) in random sections of fibers, suggested by González 
and LLorca [19].  The random arrangement of the potential failure planes in this case reflects 
the statistical variability of the fiber properties. Following this idea, we introduced damageable 
layers in several sections of fibers. These layers have the same mechanical properties as the 
fibers (except that they are damageable). The locations of the damageable layers in the fibers 
were determined using random number generator with the uniform distribution. The advantage 
of introducing thin, but 3D layers over cohesive surfaces (as in [19]) is that this approach allows 
the automatic random placement of the damageable layers at the stage of the mesh generation.   

A similar concept was used to simulate the interface cracking of composites. Given that 
surfaces of fibers can be rather rough [25], and the interface regions in many composites 
contain interphases [26, 27], the interface debonding was considered not as a two-dimensional 
opening of two contacting plane surfaces, but rather as a three-dimensional process in a thin 
layer. Thus, the interface was represented as a “third (interphase) material layer” between the 
homogeneous fiber and matrix materials (compare [15]). The thickness of the interface layer 
was taken 0.2 mm, but can be varied in further simulations. Figure 2 shows examples of 
multifiber unit cells with 20 fibers and interphase layer (yellow). 

 

3.3 Subroutine for damage simulation.  
The damage evolution in the damageable layers, placed in random sections of fibers, as well as 
in the matrix and interphase layers was modeled using the finite element weakening method 
[20, 22-23]. The idea of this approach is that the stiffness of finite elements is reduced if a 
stress or a damage parameter in the element or a nodal point exceeds some critical level. This 
approach has been realised in the ABAQUS subroutine User Defined Field [20, 23].   

In this subroutine, the phase to which a given finite element in the model is assigned, is defined 
through the field variable of the element. Depending on the field variable, different failure 
conditions are assigned by the subroutine to each finite element of the model. The subroutine 
checks whether the element failed or not, according to the properties of the matrix, interphase 
and fibers.  Another field variable characterizes the state of the element (“intact” versus 
“damaged”). If the value of the damage parameter or the principal stress in the element 
exceeds the corresponding critical level, the second field variable of the element is changed, 
and the Young modulus of this element is set to a very low value (50 Pa, i.e., about 0.00001% 
of the initial value). The numbers of failed elements are printed out in a file, which can be used 
to visualize the calculated damage distribution. Both Weibull distribution of the strengths of each 
finite elements in fibers and of whole fibers, as well as constant fiber strength, uniform and 
Gaussian distributions are included into the subroutine, and can be tested in the simulations.  

3.4 Properties of phases.  
The following properties of the phases were used in the simulations. The glass fibers behaved 
as elastic isotropic solids, with Young modulus EP=72 GPa, and Poisson’s ratio 0.26. The failure 
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strength of glass fibers was assumed to be distributed by Weibull probability law [29], with 
parameters σ0=1649 MPa and m=3.09 [29]. 

The elastic properties of the epoxy matrix were as follows: Young modulus 3790 MPa, 
Poisson’s ratio 0.37, bulk modulus 5 GPa, instantaneous shear modulus 1.38 GPa [30, 31]. The 
viscoelastic properties were described by a single term Prony series, with the relaxation time  
0.25 sec, and the modulus ratio g=0.125 [30, 31]. The failure stress of epoxy matrix was taken 
to be 67 MPa [33]. The properties of the interface/interphase layer were taken as averaged 
properties of the fibers and matrix, and were varied in some computational experiments. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

  
Figure  1. Micrograph of fracture surface of an unidirectional fiber reinforced composite (with 

failed fibers) (left) and an example of the generated FE models with 20 fibers, and 
removed layers of potential fracturing (right). Left picture presents carbon fibers in 
the polyester matrix (Courtesy of Dr. S. Goutianos, Risø National Laboratory, 
Denmark). 

 

 
 

Figure  2. Examples: unit cells with 20 fibers and interphase (yellow) layers 
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4. Computational experiments: Effect of phase 
properties on the strength and damage behavior of 
glass fiber reinforced polymer composites  

 
In this section, we investigate the effect of the phase properties on the damage evolution and 
mechanisms in the cracks in the glass fiber reinforced polymer composites, using computational 
experiments.  

 A number of three-dimensional multifiber unit cells have been generated automatically with the 
use of the program “Meso3DFiber” and the commercial code MSC/PATRAN. The dimensions of 
the unit cells were 10 x 10 x 10 mm. The cells were subject to a uniaxial tensile displacement 
loading, 1 mm, along the axis of fibers (Z axis). As output results, the stress-strain curves and 
the damage strain curves were obtained, as well as the stress and strain, and damaged 
element distributions in the unit cells. The simulations were done with ABAQUS/Standard.  

 

4.1 Damage evolution in composites with randomly distributed fiber 
strengths 

 
The deformation and damage in the unit cells were simulated numerically. Unit cells with 20 
fibers were subject to a vertical loading. Simulations with randomly (Weibull) distributed fiber 
strengths have been carried out. The parameters of the Weibull distribution are given above. At 
this stage of the work, the very strong fiber/matrix interface bonding was assumed, and only the 
effect of the matrix cracks on the fiber fracture was studied.  

In the simulations, both fiber failure and matrix cracking have been observed. Figure 3 shows 
the von Mises stress field in the fibers before the first fiber failure (a), and after the failure of two 
fibers (ε=0.012) (b). After the third fiber cracking, a matrix crack forms in the vicinity of a fiber 
crack. Figure 4 shows the formation of the matrix crack from the fiber crack (a), and the matrix 
crack growth from the fiber crack to the neighboring fibers (b, c).  

Figure 5 shows the load sharing and localization around a failed fiber, after the first fiber failure. 
The higher stresses on the fibers adjacent to the failed fiber can be seen. 

Figure 6 shows the damage-strain curve for this model. One can see that damage growth in the 
matrix begins somewhat later than the cracking in fibers, and is in fact triggered by the fiber 
failure. However, the crack growth in matrix goes on much more quickly than that in fibers.  
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a 
 

b 

 

Figure  3. Von Mises stress field in the fibers before the first fiber failure (a), and after after the 
failure of two fibers (ε=0.012) the first fiber failure (ε=0.008) (b), and three fibers 
(ε=0.013) (c, d). 

 

 
b 

 
A 

 
c 

 

Figure  4. Formation of the matrix crack from the fiber crack (a), and the matrix crack growth 
from the fiber crack to the neighboring fibers (b, c). 
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Figure  5. Load sharing and localization around a failed fiber ( after the first fiber failure, ε=0.008) 
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Figure  6. Damage-strain curves: the matrix cracking is triggered by the fiber failure, but the 
crack in matrix grows much quicker than the cracks in fibers 

 

 

4.2 Effect of the statistical variability of fiber strengths on the damage 
evolution in composites 

In this section, the comparison of the mechanical and damage behavior of composites with 
randomly (Weibull) distributed fiber strengths, and the constant fiber strength is carried out. The 
parameters of the Weibull distribution of fiber strengths was taken σ0=1649 MPa, and m=3.09, 

Overloaded fibers 
near a failed fiber 
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as above. For the case of the constant fiber strength, the strength value was calculated as a 
mean value of the Weibull distribution, by formula: σav= σ0Γ(1+1/m)=1474 MPa. 

Figure 7 shows the von Mises stress distribution in the fibers after their cracking for the case of 
constant fiber strength. The stress-strain and damage strain curves are shown in Figure 8. On 
the basis of the simulations, one can conclude that homogeneous fibers ensure higher strength 
of a composite at the pre-critical load. However, the fibers with randomly distributed strengths 
lead to the higher strength at post-critical loads. 

These simulations lead us to the idea that a combination of fibers with constant (or only slightly 
varied) strengths and those with highly variable strengths can be used to ensure high damage 
resistance of composite both at pre- and post-critical loads. 

 

 
 

Figure  7. Von Mises stress distribution in fibers after cracking for the case of constant fiber 
strength 
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A                                                                       
 
 

 

 
                 b 

Figure  8. Stress-strain and damage strain curves: random (Weibull) and constant fiber strengths.
 

4.3 Effect of the viscosity of the matrix on the damage evolution 
Here, we seek to investigate the effect of the matrix viscosity on the damage evolution in fibers. 
The unit cell model with a viscoelastic matrix, as described above, was compared  with a model 
with an elastic matrix, having the same elastic properties (E= 3790 MPa, and ν=0.37). 

The stress-strain and damage strain curves for the case of are shown in Figure 9. One can see 
that the viscosity of matrix leads to higher strains (at the same stress level) and higher damage 
rate in fibers, as compared with elastic matrix. This difference is observed only after the 
beginning of the damage evolution in fibers, and becomes more pronounced the more fibers get 
damaged. For instance, the damage density in fibers in the composite with viscoelastic matrix is 
5% higher at applied stress 300 MPa than that in the composite with a purely elastic matrix.  
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Figure  9. Stress-strain and damage strain curves: viscous matrix and the elastic matrix (with the 
same elastic coefficients) 

 

5. Influence of defects in the composites on the strength 
and damage resistance: Numerical analysis  

 

5.1 Effect of matrix defects on fiber cracking 
In this section, we investigate the effect of matrix cracks on the fiber fractures. Three versions of 
the unit cells (with 20 fibers) were generated, containing large matrix cracks, bridged by intact 
fibers. The matrix cracks were oriented horizontally, normal to the fiber axis and loading vector. 
The lengths of the cracks were taken 1.6 mm (1/6 of the cell size), 4.1 (5/12 of the cell size), 6.6 
mm (8/12 of the cell size). The crack opening was taken 1/12 of the cell size (0.8 mm). Figure 
10 shows the general appearance of the cells with matrix cracks.  

Figure 11 shows the von Mises stress distribution in the matrix and fibers, and the maximal 
shear strain in the matrix with the long crack after the fiber failure. The stresses are very high in 
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the bridging fibers, and in the matrix regions between two neighboring fiber cracks. In Figure 
11b, the regions of high strain level (shear bands) are seen, which connect the crack tip in the 
matrix with the cracks in fibers, and the fiber cracks in neighboring fibers.  

Figure 12 gives the stress-strain curves and the damage (fraction of damaged elements in the 
damageable sections of the fibers) versus strain curves. The stiffness reduction due to the fiber 
cracking is more pronounced in the cells with long cracks that in the cells with short or no matrix 
crack (13% higher stiffness in the case of intact matrix, than in the case of the matrix with a long 
crack).  

It is of interest that the damage growth in fibers seems to be independent from the crack length 
in matrix. In order to validate this result, we use the observations of Venkateswara Rao et al. 
[36]. Venkateswara Rao and colleagues demonstrated experimentally that fiber reinforced 
composites are insensitive to the presence of notches under tension loading. This experimental 
result conforms our theoretical simulations. 

However, the weak influence of the matrix cracks on the fiber fracture in this case is in strong 
contrast to our other results obtained for the case of the constant fiber strength and ductile 
(aluminium) matrix, presented in [35]. In this work, a strong effect of the matrix crack length on 
the damage growth and the stress-strain curve of the composites was observed. In order to 
separate out the effect of the ductile matrix and the constant fiber strength, we carried out the 
simulations (similar to above) with the constant fiber strength. Figures 13 and 14 give the 
stress-strain curves and the damage versus strain curves for the case of constant fiber 
strengths. The curves for randomly distributed fiber strengths are given for comparison as well.  
It can be seen that the matrix cracks do influence the beginning of fiber cracking and the peak 
stress, if the fiber strength is constant. In the composites with constant fiber strengths, fiber 
fracture begins much earlier if the matrix is cracked than in the case of intact matrix. Generally, 
fiber cracking begins the earlier the longer crack in the matrix. The critical strain, at which the 
stiffness of composite is stepwise lowered, is independent on the length of the matrix cracks. 

One may state that the matrix cracks have an effect somewhat similar to the statistical variability 
of fiber strengths: they make the material weakening during the failure process smooth and 
nonlinear.  

The main conclusion from the above simulations is that the statistical variability of fiber 
strengths has stronger effect on the damage evolution in the composites, than the matrix cracks 
and their sizes. Thus, the variability of the fiber properties supersedes the effect of matrix 
cracks on the composite strength. 
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Figure  10. Unit cell with a matrix crack and bridging fibers [1, 35] 
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Figure  11. Von Mises stress distribution in the fibers and matrix (a), and maximal shear strain in 
the matrix (b) after  the fiber cracking 
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Figure  12. Stress-strain (a) and damage (fraction of damaged elements in the damageable 
sections of the fibers) versus strain (b) curves for the unit cells with and without the 
matrix cracks. 
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Figure  13. Stress-strain curves for the unit cells with and without the matrix cracks, with constant 
(CS) and randomly distributed (W-Weibull) strengths of fibers.  

 

 

 

Figure  14. Damage (fraction of damaged elements in the damageable sections of the fibers) 
versus strain curves for the unit cells with and without the matrix cracks, with the 
constant strength of fibers. A curve for randomly distributed fiber strengths is given 
for comparison.   
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5.2 Matrix defects and their influence on interface damage 
 
Let us consider the interaction between the damage growth in the interface layer and the matrix 
defects. A number of unit cells (with 15 fibers and 25% fiber volume content) were generated, 
and subject to the axial loading. The intact, but damageable interface layers are considered. 
The thickness of the interface layer was taken 0.2 mm. The interface layer was assumed to be 
a homogeneous isotropic material, with Young modulus 37.9 GPa (i.e., the average value of the 
Young moduli of fiber and matrix materials) and Poisson’s ratio of the matrix. As a first 
approximation, we chose the maximum principal stress criterion for the interface damage 
(therefore, assuming rather brittle interface).  As noted in [35], the homogeneous representation 
of the interphase layer can be considered only as a first approximation, and the model can be 
further improved if the graded material model is used to represent the interface layer, with 
properties to be determined from the inverse analysis [1].   

First, we considered the case of intact, strong and tough matrix, and damageable fibers and 
interface layers. Figure 15 shows the damage evolution in the fibers and matrix, observed in the 
simulations for the case of critical stress of interface layer 550 Mpa.  One can see that the 
formation of the interface cracks takes place after the fiber cracking, and in the vicinity of the 
fiber cracks. Thus, the formation of interface cracks is triggered by the fiber cracks. After an 
interface crack is formed, it can cause the formation of other interface cracks near neighbouring 
fibers (in the case of relative weak interfaces).  

Further, the simulations of the damage evolution in the unit cells with differently strong interface 
layers and with and without bridged matrix cracks have been carried out. Several levels of the 
critical stress of interface layer have been taken:  100, 150, 250, 400, 550 and 750 MPa (the 
last value corresponds to the mean value of the average strengths of fibers and the matrix). The 
unit cells with the matrix cracks (notches) had the crack length of 0.3 (short crack) and 0.58 of 
the cell size (long crack). The fiber arrangement in the cells with and without matrix cracks was 
the same. The stress-strain curves, damage-strain curves for the fibers and interfaces have 
been obtained.  

Figure 16 shows some representative interface damage-applied strain curves for the cases of 
the interfaces with different strengths (100, 250, 400, 770 MPa). Both the cases with and 
without the matrix crack are considered. For the interface strengths of 400, 500 (not shown) and 
770 MPa (“strong interfaces”), the stress-strain curves as well as the damage-strain curves of 
fibers are almost identical in the cases with and without matrix cracks. Apparently, the 
degradation of composite in this case is fully controlled by the fiber strength and failure. When 
the fibers fail, it leads to the interface damage (compare Figure 15).  

However, in the case of a weak interface (100, 150 and 250 MPa), the damage mechanism in 
the composite is changed. No fiber cracking is observed, but the interface damage begins much 
earlier, than in the case of the stronger interface. The interface damage in this case is clearly 
influenced by the matrix cracking.  Thus, the interface properties influence the sensitivity of the 
composites to the matrix defects: in the case of the weak fiber/matrix interface, the matrix 
defects can speed up the cracking in fibers and the composite failure.  



UPWIND : COMPUTATIONAL MODEL OF DAMAGE  
   

Deliverable 3.2.1 

a b 

 

c 

 

 

Figure  15.  Damage evolutio in a composite with damageable interface and fibers, and strong 
matrix: (a) Fiber cracking, u=7e-3 mm, (b) Interface damage nearby the fiber crack, 
u=7.2e-3 mm, (c) Interface damage near the neighbouring fiber, u=9.4..9.8e-3 mm. 
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Figure  16. Representative damage-strain curves for interface damage for the interfaces with differently 
strengths (100, 250, 400 and 770 Mpa). The unit cells with no matrix crack (INT=intact 
matrix) and with a long matrix crack (0.58 of the cell size, LC=long crack) are considered. 

 

5.3 Interface defects and their influence on fiber cracking 
 
In the previous section, we observed that the interface damage is triggered by the fiber 
cracking. In this section, we analyze the effect of the pre-damaged interface on the fiber 
cracking in the composite. A half-circular interface microcrack was introduced into an interface 
layer in the unit cell model with 15 fibers (Figure 17). The unit cell with the microdamaged 
interface was subject to a tensile loading. The critical stress in the interface was assumed to be 
770 MPa. 

Some results of the simulation are shown in Figure 18: the Mises stress distribution in a 
horizontal section of the cell (a) (u=0.0045 mm), in a vertical section of the fibers with intact and 
damaged interface layers before (b) and after (a) first fiber cracking (u=0.0075 mm), and the 
formation of interface cracks in the unit cell (d) (u=0.008 mm).  

It is of interest that the damaged interface leads to a slightly lower stress level in the 
corresponding fiber: while the stresses in the vicinity of the interface crack are rather high, the 
far field stresses in the fiber are lower than those in fibers with undamaged interfaces. As a 
result, not the fiber with damaged interface fails first, but another fiber. It can be seen from 
Figure 18cd that the fiber crack (which took place not in the fiber with damaged interface, but in 
another fiber) leads to the interface damage just around the fiber crack.  

Thus, we observe again that a microcrack in the interface layer does not cause the fiber 
cracking in the adjacent fiber, but even slightly reduces the load on the fiber (thus, reducing the 
likelihood of the failure of this fiber). In order to validate this conclusion, we use the 
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observations  by Feih et al. [37]. In their experimental investigations, Feih and colleagues 
observed “a shift to a later fragmentation onset with weaker interface bonding”, which was 
attributed to the “partial fiber debonding prior to first fiber fracture [which were observed during 
the fragmentation test], thereby resulting in a lower fiber strain and later fragmentation onset”. 
This confirms our results obtained in this section. 

The fiber cracks cause interface damage, but not vice versa. (It should be stressed that this 
observation was made in the given case/ for given material properties, and the results in other 
cases can be different). 

 
 

Figure  17. A half-circular microcrack in the interface layer  
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Figure  18. Stress distribution in the unit cell with microdamaged interface: the Mises stress distribution 
in a horizontal section of the cell (a), in a vertical section of the fibers with intact and 
damaged interface layers before (b) and after (a) first fiber cracking, and the formation of 
interface cracks in the unit cell (d). 

 

 

5.4 Competition between damage modes in composites  
In this section, the interaction between all three damage modes in composites (matrix cracks, 
interface damage and fiber fracture) is considered.   

Figure 19 shows the results of simulations: damage formation in the fibers, interface and matrix. 
The damage evolution begins by formation of a crack in a fiber and (in another, rather far site) 
in the matrix (u=0.1 mm). Then, the interface crack forms nearby the fiber crack, and the large 
matrix crack is formed (u=0.15 mm). Figure 20 shows the damage-strain curves for this case. 

It is of interest that in the case when all the three damage mechanisms are possible, the 
competition between the matrix cracking and the interface debonding is observed. In the area, 
where the interface is damaged, no matrix crack forms; vice versa, in the area, where the long 
matrix cracks is formed, the fiber cracking does not lead to the interface damage.  

Apparently, weak interfaces of a composite, as such, have a negative effect of the composite 
properties: ultimately, the homogeneously weak interfaces will debond and the composite will 
behave as a dry fiber bundle. However, the results of this and previous sections demonstrate 
that local weak places in composite interfaces can be rather beneficial for the composite 
strength and toughness: they can prevent the matrix failure (by channeling the fracture energy 
into interface defects), and even delay the fiber failure. Practically, it means that a 
heterogeneous interface (interface with both weak and strong regions) can prevent the matrix 
failure, and therefore, ensure the integrity of the material. 
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Figure  19. Competition of damage modes: (a) one failed fiber and a few microcracks in the matrix (red), 
u=0.1 mm, and (b) two fibers have failed, the interface crack is formed in the vicinity of a 
fiber crack and the matrix crack is formed (u=0.15 mm). 

 

 

 

Figure  20. Damage-strain curves for the case of three acting damage mechanisms 

 
 
6. Conclusions 
Numerical investigations of the damage evolution in glass fiber reinforced polymer matrix 
composites are used to analyse the interplay of damage mechanisms (fiber, matrix, interface 
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cracking) and the effect of local properties on the microscopic damage mechanisms. The 
computational investigations lead us to following conclusions: 

• Fibers with constant strength ensure higher strength of a composite at the pre-critical 
load, while the fibers with randomly distributed strengths lead to the higher strength of 
the composite at post-critical loads. 

• The viscosity of the matrix leads to the higher damage rate in fibers, as compared with 
the elastic matrix. 

• The influence of the matrix defects on the composite strength is much weaker than the 
effect of the statistical variability of fiber strengths. If the fiber strength is constant, the 
fiber cracking begins the earlier, the longer is the matrix crack. In the case of randomly 
distributed fiber strengths, the damage growth in fibers seems to be almost 
independent from the crack length in matrix, and fully controlled by the load 
redistribution from weak and failed to remaining fibers.  

• Interface cracks have a remarkable effect on other damage modes (as fiber and matrix 
cracking):  no matrix crack formed near the fibers with damaged interfaces; vice versa, 
in the area, where the long matrix cracks is formed, the fiber cracking does not lead to 
the interface damage. Further, it was observed that the damaged interface causes 
slightly lower stress level in adjacent fibers, what can lead to the situation when other 
fibers, with intact interfaces fail first. Practically, these observations suggest that an 
interface with varied strengths and weak local areas can delay the matrix failure and 
even fiber failure, and therefore, ensure the higher strength of the composite. 
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