
 1

 

 

Report:  

EU FP6 Project UpWind 

Integrated Wind Turbine Design (WP3.2) 

Deliverable  D.3.2.1b 

 

 
 

Stiffness Degradation Models 

 
 

Janis Varna 
Dept of Applied Physics and Mechanical Engineering 

Luleå University of Technology 
Sweden 



 2

Contents 
 
           Page 

ABSTRACT          3 

1. Constitutive relationships for laminates with intralaminar ply cracks in in-plane 
loading          4 
1.1 Literature review         4 
1.2 Modeling stress-strain response of damaged laminates     12 

1.2.1 Problem Formulation       12 
1.2.2 Homogenization Relationships      13 
1.2.3 Crack Face Relative Displacements and Vakulenko-Kachanov Tensor   14 
1.2.4 Constitutive Relationships for Damaged Laminates    16 
1.2.5 Stiffness and Compliance Matrices of the Damaged Laminate  17 
1.2.6 Thermal Expansion Coefficients of the Damaged Laminate  18 

1.3  Thermo-Elastic Properties of Laminates with Cracks in 90-layers  19 
1.4 Crack opening (COD) and sliding (CSD) displacements    21 
 1.4.1 Determination of Constants in Power Law for COD   23 

1.4.2 Determination of parameters in power law for crack face sliding 
displacement CSD        25 

1.5 Validation of the analytical simulation tool     31 
1.5.1 Validation using FEM results regarding the thermo-elastic properties of 
damaged laminates        31 
1.5.2 Validation of the Model using Experimental Data   43 

1.6 Range of validity of the analytical approach     48 
1.7 Conclusions for Chapter 1       50 
 
2 Modeling UD composite stiffness reduction due to multiple fiber breaks and interface 
debonding          51 
2.1  Introduction         51 
2.2 Stiffness reduction modeling       52 
2. 3 Form of the [ ]H k matrix        56 
2. 4. Crack face displacement matrix [ ]U f       58 
2.5. Factors affecting the normalized average crack opening displacement (NACOD)   59 
2.6. Stiffness reduction due to fiber breaks in a unidirectional layer.   69 
2.7 Conclusions for Chapter 2       71 

Appendix 1         72 
Appendix 2         74 

REFERENCES         77 
 



 3

 

ABSTRACT:  
A theoretical framework which allows determining the whole set of 2-D thermo-

mechanical constants of a damaged laminate as a function of intralaminar crack density 

in different layers is presented. In this approach closed form expressions, which contain 

thermo-elastic ply properties, laminate lay-up and intralaminar crack density as the input 

information are obtained. It is shown that the crack face opening displacement (COD) 

and crack face sliding displacement, normalized with respect to a load variable, are 

important parameters in these expressions influencing the level of the properties 

degradation. They are determined using generalized plain strain FEM analysis results for 

non-interactive cracks. The strong dependence of the COD on the relative stiffness and 

thickness of the surrounding layers, found in this study, is described by a power law. The 

methodology is validated and the possible error introduced by the non-interactive crack 

assumption is estimated by comparing with the 3-D FEM solution for a cross-ply 

laminate with two orthogonal systems of ply-cracks. Experimental data and comparison 

with other models are used for further verification. 

Stiffness of a unidirectional composite (UD) containing fiber breaks with partial 

debonding is analyzed. Using divergence theorem exact relationships are obtained which 

link the entire stiffness matrix of the damaged UD composite with two robust parameters 

from the local solution: average opening displacement (COD) of the fiber break and its 

sliding displacement (CSD). Both are normalized with respect to the size of the fiber 

crack and to the far field stress in the fiber.  The effect of the partial fibe/matrix 

debonding at the interface is included in the model through increasing crack opening. 

Using parametric inspection of obtained expressions it was shown that CSD does not 

affect the longitudinal stiffness and the COD effect on transverse and shear modulus and 

Poisson’s ratio of the damaged composite is negligible. It motivated the decision to focus 

on COD and the longitudinal modulus. In this paper cracks are considered as non-

interactive which makes the stiffness predictions conservative in a large fiber crack 

density region. 

The dependence of COD on fiber and matrix properties, fiber content, debond length etc 

is described by simple fitting functions obtained from extensive FEM based parametric 



 4

analysis. FEM analysis is performed using a model which consists of three concentric 

cylinders: a) broken fiber; b) matrix cylinder; c) large cylinder of effective composite 

cylinder. The observed trends are described by simple fitting functions which with a high 

accuracy describe COD’s of perfectly bonded and partially debonded cracks.  

Simulations performed for carbon and glass fiber polymer composites show the 

significance of debond length on the stiffness reduction. 

 

 

 

1. Constitutive relationships for laminates with intralaminar ply cracks 

in in-plane loading 

 

1.1  Literature review 
Composite laminates under service loading undergo complex combinations of thermal 

and mechanical loading, leading to microdamage accumulation in the plies, see Fig. 

1.1. The first mode of damage is usually intralaminar cracking with the crack plane 

transverse to the laminate middle-plane, spanning the whole width of the specimen. The 

density of cracks in a ply depends on layer orientation with respect to the load 

direction, temperature change, number of cycles in fatigue, laminate lay-up, ply 

thickness and, certainly, material fracture toughness. Relative displacements of crack 

surfaces during loading reduce the average strain and stress in the damaged layer, thus 

reducing the laminate stiffness. Many papers have been written on this subject, 

covering a broad range from micromechanics based to continuum damage mechanics 

based models (see review for example in Nairn and Hu (1994), Nairn (2000) and 

Talreja (1994)).  

Most of the research has, however, been focused on cross-ply laminates which are 

excellent for academic studies of phenomena but are seldom used in practical 

applications. Laminates with a general lay-up containing cracks in several layers of 
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different orientation are, therefore, a challenge for any constitutive model. 

 

 
 

Figure 1.1. Schematic view over [0,90]s laminate with two orthogonal systems of cracks. 

 

 

A two-dimensional shear-lag analysis is a simplest way to describe a doubly periodic 

matrix cracking in cross-ply laminates. It is used in Henaff-Gardin et al. (1996), where 

parabolic shape of the crack face is assumed to model the crack profile. It means that no 

distinction has been made between crack shape in the internal and the external layers. 

Model for general in-plane loading is derived for [0m,90n]s laminates averaging the 

equilibrium equations and obtaining second order differential equations in a usual way. 

Unfortunately, there is no comparison with experimental data or with other models in this 

paper. 

Hashin (1987) generalized his model (Hashin, 1985) to the case when cracks are in both 

0- and 90-layers of a cross-ply laminate. Solution for an orthogonally cracked cross-ply 

laminate under tension was found constructing a simple admissible stress field in the 

context of the principle of minimum complementary energy. The chosen stress field 

satisfies equilibrium equations and all boundary and interface conditions in tractions. The 

assumed constant in-plane normal stress distribution over each layer thickness leads to 

linear and parabolic through-the-thickness distributions of out-of-plane shear and normal 

stresses, respectively. The principle of minimum complementary energy (which for 

approximate stress distributions is equivalent satisfying the displacement continuity 

equations in average) is used to calculate the stress distributions. Expressions for 
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damaged laminate E-modulus and Poisson’s ratio were derived. This model does not 

involve any fitting parameters and is simple to use. Since Hashin’s model renders a lower 

bound of the stiffness, its accuracy could be improved by more refined assumptions 

regarding the thickness coordinate dependence of stresses. The assumptions used are 

oversimplified and give too low stiffness of the damaged laminate. 

McCartney (1992) applied his model, which is based on the same stress distribution 

assumptions as Hashin’s model (Hashin, 1987) but the governing equations are obtained 

from Reissners principle, to doubly-cracked cross-ply laminates assuming that the in-

plane normal stress dependence on the two in-plane coordinates is given by two 

independent functions.   

Model of similar accuracy as Hashin’s and McCartney’s models was developed by 

Abdelrahman and Nayfeh (1999) to analyze stiffness of doubly-cracked cross-ply 

laminates. In addition to the assumptions of a linear shear stress distribution across of 

each layer, which is the same as in Hashin’s model, authors assume linear distribution of 

out-of-plane displacements. These assumptions allow for exact satisfaction of all 

displacement and traction interface and boundary conditions. Since in derivations only 

the stress-strain relationships averaged over the layer thickness are used, the constitutive 

relationships are not satisfied point-wise. The governing equations are a system of two 4th 

order partial differential equations with constant coefficients. Unfortunately, predictions 

and comparison with test data and other models are presented only for the case of one 

crack system. 

The most accurate local stress state comparable with a very fine FE solution and, 

therefore, also accurate stiffness prediction can be obtained using semi-analytical 

McCartney (1995) and Schoeppner and Pagano (1998) models. In the McCartney model 

each layer in the laminate is divided in a certain number of thin sub-layers and in each 

sub-layer the stress assumptions are as in Hashin’s variational model (Hashin, 1985). All 

displacement and stress continuity conditions at sub-layer interfaces are satisfied as are 

the stress-strain relationships, except one, which is satisfied in an average sense. It has 

been shown that this “satisfying in average” is identical to minimization of the Reissner 

energy functional in the used approximation of the stress-strain state. The Schoeppner-

Pagano model (1998), which is also based on Reissners principle, considers a system of 



 7

hollow concentric sub-cylinders with a large radius instead of laminate divided in sub-

layers. Each layer is divided in a number of cylinders. In order to simulate interface 

cracks these cylinders may also be connected in parallel. Shape functions for each sub-

cylinder in this model are different than in McCartney’s model but the results converge 

with increasing number of sub-layers (sub-cylinders) ( MC Cartney et al., 2000). 

However, the calculation routines in these models are extremely complex which limits 

the application.  

Neither of these models can be directly used for laminates containing several systems of 

cracks. However, considering these crack systems as non-interacting one can first 

introduce crack system in 90-layer only and back-calculate the effective stiffness of the 

damaged layer from the damaged laminate stiffness. Then the intralaminar cracks are 

introduced in the 0-layer only and similar problem as described above is solved in a 

system of coordinates rotated by 90°. Finally the effective properties of all damaged 

layers may be used in laminate theory to calculate the stiffness of laminate with cracks in 

both layers. The Schoepner and Pagano model has been used in this way to predict the 

reduction of thermal expansion coefficients of cross-ply laminates with cracks in both 0- 

and 90-layers in ( Kim et al., 2000).  

Analytical modeling of in-plane shear modulus of the damaged laminate is considered 

only in a few investigations. 

Hashin (1985) investigated the in-plane shear modulus reduction of cross-ply laminates 

with cracks in inside 90-layer using a variational approach. In his model an admissible 

stress field is constructed which satisfies equilibrium as well as the boundary and 

interface conditions in tractions. The in-plane shear stress distribution across each ply 

was assumed uniform and the only unknown function describing the shear stress in-plane 

distribution was determined using the principle of minimum complementary energy. 

Using the calculated stress distribution the lower bounds for the shear modulus of the 

laminate was obtained. Exactly the same expression for shear modulus reduction was 

obtained using two entirely different approaches (Nuismer et al., 1988, Tan et al., 1989, 

Tsai et al., 1992, 1990, Abdelrahman et al., 1999): a) Tan et al.( 1988, 1989) obtained 

expressions for axial modulus, Poisson’s ratio and shear modulus of the cross-ply 

laminate with 90-cracks integrating the equilibrium and constitutive expressions over the 
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ply thickness and obtaining a second order differential equations for stress distributions; 

b) Tsai et al (1990, 1992) and Abdelrahman et al (1999) reduced the 3-D elasticity 

problem to 2-D problem in terms of displacements (Tsai et al., 1992) or stresses 

(Abdelrahman et al., 1999) averaged over the ply thickness and solved analytically the 

obtained set of  differential equations with constant coefficients. The results of all these 

models coincide due to assumed linear through the thickness dependence of the out-of-

plane shear stresses. Henaff-Gardin et al (1996) analyzed the double-cracked cross-ply 

laminates in a similar manner as in Tsa et al., (1992) just using simpler shear lag model 

with parabolic opening displacement and uniform sliding displacement distributions. 

Since the free crack surface conditions were satisfied only in average, they could find the 

shear stress distribution analytically. Tsai et al (1992) developed a methodology for shear 

modulus determination using an experimental setup where a pre-damaged tensile 

specimen is subjected to in-plane tangential displacement in the middle part. Then the 

shear modulus was calculated using a Timoshenko beam approximation of the specimen 

deformation. Herakovich et al (1988) used for displacements in a layer of a cross-ply 

laminate with cracks in 90-layer a second order Legendre expansion with respect to the 

out-of-plane coordinate z . The set of governing equations for the 9 unknown functions of 

in-plane coordinates was obtained multiplying equilibrium equations by zn  and 

integrating, and solved using finite differences. Comparison with FEM results showed 

that the approximate model gives consistently too small stiffness reduction. Hua Yu et al 

(1996) used approach by Tsai et al. (19992) to analyze the stiffness matrix of unbalanced 

[θm/90n]s laminates with cracks in 90-layers by partition the initial coupled problem in 

two uncoupled subproblems, the first of them being exactly the same as in Tsa et al., 

1992. 

Tsai et al (1990) considered also shear response of cross-ply laminates with cracks in 

both 90- and 0-layer. In this case the set of 2-D equations was solved numerically using 

finite differences. They suggested that an expression based on “superposition of 

solutions” may give good accuracy. 

Fan et al (1993), using the expressions for a compliance of a solid with microcracks 

derived by Horii et al (1980), presented the constitutive equations for a layer with cracks. 

These expressions apart from lamina properties contain also so-called “in-situ damage 
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effective functions -IDEF” which depend on crack density in the lamina and on the 

neighbouring layer constraint. In order to determine IDEF they introduced “an equivalent 

constraint model”, which assumes that the constraint of the lay-ups above and below the 

analyzed lamina can be described by two sublaminates with properties calculated using 

laminate theory (CLT). Thereby the actual laminate was replaced by a cross-ply. The 

stress state in the repeating unit of the cross-ply laminate and the IDEF’s were calculated 

using standard shear lag model with linear distribution of out-of-plane shear stresses. 

Then the constitutive relationships for damaged layers were used in the framework of the 

CLT to obtain the stiffness matrix of the damaged laminate. Since the micromechanical 

local stress model coincides with the presented in Tsai et al. (1990, 1992), the predictions 

of the shear modulus for the cross-ply laminate with cracks in 90-layer only, which is the 

only case discussed in Fan et al. (1993), also have to coincide or be very similar. This 

approach was further refined by Zhang et al (1992)  where the local stress problem was 

solved using an improved shear lag model which  assumes non-zero 0-layer intralaminar 

shear stress only in a zone in the vicinity of the transverse crack tip. The only problem is 

that the size of this zone becomes a fitting parameter. 

The same micromechanics model was used also by Kashtalyan et al (2000) where in the 

“equivalent constraint model” the effective properties of the constraint layer were 

adjusted for damage when analyzing the local stresses in another layer. This leads to an 

iterative procedure when cracks are present in both 0- and 90-layer of the cross-ply 

laminate. It was shown that a) the results are quite different when the shear stress 

localization model is used; b) the interaction of cracks in two layers leads to considerable 

additional reduction of the laminate shear modulus. It should be noted that the 

methodology, which was developed and used for cross-ply laminates, could be rather 

easy generalized to more general lay-ups. Local delaminations at the tip of transverse 

cracks were included in the analysis by the same authors (2002) were also a rather 

detailed analysis of the state of art on this subject is presented. 

Generally speaking, the continuum damage mechanics (CDM) approaches (Allen et al., 

1987, Ladeveze, 1980, Talreja, 1994) may be used to describe the stiffness of laminates 

with intralaminar cracks in off-axis plies of any orientation. The damage is represented 

by internal state variables (ISV) and the laminate constitutive equations are expressed in 
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general forms containing ISV and a certain number of material constants. These constants 

must be determined for each considered laminate configuration either experimentally 

measuring stiffness for a laminate with a certain crack density or using FE analysis for 

the same reason. This limitation is partially removed in synergistic damage mechanics 

suggested by Talreja (1996) which incorporates micromechanics information to 

determine the material constants. For the same [±θ, 902]s class of laminates as in 

theoretical assessment (Talreja, 1996).  Varna et al. (1999a) used experimentally 

measured crack opening displacement (COD) to identify the constraint parameter in 

CDM and to make stiffness predictions. For these measurements a special device was 

designed and measurements were performed using optical microscopy on loaded 

specimens (Varna, 1993). The same technique was later applied to measure COD for 

cracks in off- axis plies of [0/±θ4/01/2]s laminates and to perform CDM predictions 

(Varna et al., 1999b).  

An extensive FE parametric analysis in plane stress formulation was performed by Joffe 

et al. (2001) to identify the main geometrical and stiffness parameters affecting the COD. 

It was found that average COD normalized with respect to the far field stress in the layer 

and the layer thickness is a very robust parameter: variation of shear moduli and 

Poisson’s ratios has a negligible effect on the normalized COD. Only the stiffness and 

thickness ratios of the cracked to uncracked neighboring layers have a significant effect. 

Based on numerical results the numerical COD values were fitted by power law. The 

main conclusion was that increasing stiffness and thickness of the constraint layer leads 

to significant reduction of the average normalized COD.  

This power law for COD was used in the synergistic CDM predictions of stiffness 

reduction in [±θ,904]s laminates (Varna et al., 2001) with cracks in 90-layers only. 

Recently it was demonstrated using micromechanics that all material parameters in CDM 

for this lay-up depend only on the material properties of the layer, not on the laminate 

lay-up (Varna et al., 2003). This finding was not proven for laminates with cracked layers 

other than 90° because analytical micromechanics solution for a general case does not 

exist.  

Gudmundson and co-workers (1992, 1993) considered laminates with general lay-up and 

used homogenization technique to derive expressions for stiffness and thermal expansion 
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coefficient of laminates with cracks in layers of 3-D laminates. These expressions in an 

exact form correlate damaged laminate thermo-elastic properties with parameters 

characterizing crack behavior: the average COD and crack face sliding. These parameters 

follow from the solution of the local boundary value problem and their determination is a 

very complex task. Gudmundson and co-workers suggested to neglect the effect of 

neighboring layers on crack face displacements and to determine them using the known 

solution for a periodic system of cracks in an infinite homogeneous transversely isotropic 

medium (90-layer). The application of their methodology by other researchers has been 

rather limited due to the fairly complex form of the presented solutions. 

 

In the present report an approach, similar to that performed by Gudmundson, is presented 

in the framework of the laminate theory. The largest advantage in this methodology is the 

transparency of derivations and the simplicity of application (the ideas were introduced 

by Lundmark and Varna, 2003, 2005, 2006). Stiffness or compliance matrices and 

thermal expansion coefficients of an arbitrary symmetric laminate with damage in certain 

layers are presented in an explicit form.  Derivation of constitutive relationships follows 

the same route as in classical laminate theory. As an input from homogenization theory 

the relationships between volume averaged and boundary surface averaged quantities are 

used. The differences between undamaged and damaged laminate cases are indicated in 

each step of derivation. The damaged laminate stiffness and thermal expansion 

coefficients are calculated from the undamaged laminate stiffness and the crack face 

displacements.  

 

In contrast to Gudmundson’s approach ( Gudmundson and Östlund, 1992, Gudmundson 

and Zang, 1993) the normalized COD and crack face sliding are considered as dependent 

on the position of the cracked layer (outside or inside cracks) and on the constraint of the 

surrounding layers in terms of their stiffness and thickness. These dependences are 

analyzed using FEM calculated crack opening displacement profiles in generalized plane 

strain formulation and presenting the results in the form of power laws. 
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In a special case of balanced laminates with cracks in 90-layer only, expressions for 

thermo-elastic properties are presented in an explicit and compact form. 

 

 

1.2 Modeling stress-strain response of damaged laminates  

 
1.2.1 Problem Formulation 

In this derivation, a symmetric laminate subjected to general in-plane loading is 

considered, see Fig. 1.2. To exclude bending effects the laminate is assumed to be 

symmetric also in the damaged state (crack density is the same in layers with symmetric 

location with respect to the mid-plane). Only in-plane loading is considered and the 

intralaminar cracks are assumed to run parallel to fibers with a crack plane transverse to 

the laminate mid-plane and to span the whole cross-section of the layer. Laminate 

contains N layers of which the k-th layer is characterized by stiffness [ ]Q k , thickness tk 

and fiber orientation angle which determines the stress transformation matrix [ ]T k  

between global and local coordinates. The overbar on the matrix and vectors denotes 

quantities in the global coordinate system. The crack density in a layer is  l kk 21=ρ  

and normalized crack density ρ kn  is defined as ρρ kkkn t= . The geometry of the problem 

for particular case of a doubly cracked cross-ply laminate can be seen in Fig. 1.1. 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Geometry of RVE used in derivation 
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The thermo-elastic relation between applied stresses and the strains experienced by the 

damaged laminate can be written in the following way. 

 

    { } [ ] { } { }[ ]TQ LAMLAMLAMLAM ∆−= αεσ       (1.1) 

 

where  refTTT −=∆         (1.2) 

In (1.1) { }LAMσ  and { }LAMε  are macroscopic stress and strain vectors applied at the 

boundary of the representative volume element (RVE), [ ]LAMQ  and { }LAMα  are the 

unknown stiffness matrix and thermal expansion coefficient vector of the damaged 

laminate  to be determined. 

 

1.2.2 Homogenization Relationships 

Introducing volume averaged stresses and strains as in Allen et al., (1998) and using 

superscript a to denote average quantities, we have, 

 

    ∫=
V

ij
a
ij dV

V
σσ 1   ∫=

V
ij

a
ij dV

V
εε 1     (1.3) 

 

Here V is the volume of averaging, which may be one layer or the whole laminate 

volume, as needed. The average stress-strain relationships for a k-th layer in the global 

coordinate system are 

    { } [ ] { } { }
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∆−= TQ k

a

kk

a

k αεσ        (1.4) 

Using divergence theorem it may be shown Allen et al., (1998), Varna (2002) that 

stresses applied to the laminate boundary are equal to the stresses averaged over the 

volume of the whole laminate. Expressing the volume integral as a sum of integrals over 

volume of individual layers, we obtain  
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    { } { } { }
h
tk

N

k

a

k

aLAM ∑
=

==
1
σσσ        (1.5) 

Using the divergence theorem it can also be shown (Allen et al., 1998, Varna, 2002) that 

the volume average strains in each layer are equal to boundary averaged strains defined 

as 

    ( )dSnunu
V ijji

S
ij +=Ε ∫ 2

11        (1.6) 

Definition (1.6) is written for tensorial boundary averaged strains. Using  this definition 

one can easily check that average strains at the external boundary of a layer are equal to 

the applied macroscopic strains, which are the same for all layers in the damaged 

laminate (iso-strain condition in laminate theory).  

Since the integration in (1.6) involves the total boundary including the crack surface, the 

abovementioned equality of volume averaged and boundary averaged strains for k-th 

layer may be written as 

    

a

k

LAMa

k
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⎪
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⎪
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⎧

β
β
β

γ
ε
ε

γ
ε
ε

2 12

22

11

12

2

1

12

2

1

.       (1.7) 

Here { }a

kβ is the Vakulenko-Kachanov tensor defined by 

    ( )dSnunu
V ijji

S

a
ij

C

+= ∫ 2
11β        (1.8) 

We will use in this paper engineering strains and engineering form of the Vakulenko-

Kachanov tensor { }
−

kβ . In layers with no cracks, ijβ  is zero. Sc is the total surface of 

cracks in the layer, ui are displacements of the points on the crack surface, ni is outer 

normal to the crack surface, V is the volume of the layer. 

 

1.2.3 Crack Face Relative Displacements and Vakulenko-Kachanov Tensor 

Considering (1.8) in the local co-ordinate system related to fiber orientation in the k-th 

layer, it is seen that the only non-zero components are 12β and 22β   (1 is the fiber 

direction and 2 is transverse to the fiber direction), given by, 
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   k
ak

k u112 ρβ −=   k
ak

k u222 2ρβ −=     (1.9) 

Here k
au1 and k

au2 are the average crack face sliding displacement and average crack face 

opening displacement, respectively defined as 

 

    ∫
−

∆=
2

2

3311 )(
2
1

k

k

t

tk

k
a dxxu

t
u           ∫

−

∆=
2

2

3322 )(
2
1

k

k

t

tk

k
a dxxu

t
u   (1.10) 

Here iu∆  are the separation distances of the two crack faces. Normalizing the 

displacements with respect to thickness of the cracked layer (length of the crack) and the 

far field (CLT) stresses in the layer corresponding to the same load applied to undamaged 

laminate (indicated by subscript 0 ) gives: 

 

    k
k

k
a

k
an t

Euu
120

2
11

σ
=   k

k

k
a

k
an t

Euu
20

2
22

σ
=     (1.11) 

 

Using Equation (1.11) in Equation (1.9) provides expressions for components of 

Vakulenko-Kachanov tensor through normalized displacements and far field stresses: 

 

   
2

120
112 E

u k
ankn

k σρβ −=   
2

20
222 2

E
u k

ankn
k σ

ρβ −=    (1.12) 

Introducing the displacement matrix U makes it possible to express the Vakulenko-

Kachanov tensor in the Voigt notation as a matrix product 

    [ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

k
an

k
ank

u
uU

1

2

00
00
000

2        (1.13) 

 

    { } [ ] { }kk
kn

k U
E 0

2

σ
ρ

β −=        (1.14) 

From here on the vectorial representation of the Vakulenko-Kachanov tensor is used. 
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Transforming Equation (1.14) to global coordinates is same as engineering strain 

transformation in CLT. 

 

    { } [ ] { }k
T
kk T ββ =

−

        (1.15) 

 

The far field stress components in the cracked layer required in Equation (1.14) can be 

expressed using CLT. 

 

    { } [ ] [ ] { } { } ⎥
⎦

⎤
⎢
⎣

⎡
∆−= TQT k

LAM

kkk

_

0

_

0 αεσ      (1.16) 

 

Substituting Equation (1.16) and (1.14) in Equation (1.15) gives: 

 

    { } [ ] [ ] [ ] [ ] { } { } ⎥
⎦

⎤
⎢
⎣

⎡
∆−

−
=

−−

TQTUT
E k

LAM

kkk
T
k
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k

_

0
2

αε
ρ

β     (1.17) 

 

 

1.2.4 Constitutive Relationships for Damaged Laminates  

Substituting the expression (1.7) in the averaged stress-strain relationships (1.4) and 

using Equation (1.5) gives the following expression for laminate stresses. 

 

    { } [ ] { } [ ] { } { }∑∑
==

+∆−=
N

k
kkk

N

k
kkk

LAMLAMLAM tQ
h

tTQ
h

Q
1

__

1

__

0 ][11 βαεσ   (1.18) 

 

The second term on the right-hand-side of (1.18) can be identified with the “thermal 

force” per unit thickness, { }LAM
thσ  known in laminate theory. Since it can be related to 

the strain response of undamaged laminate as 

    { } [ ] { }LAM
th

LAMLAM
th Q 00 εσ = ,       (1.19) 
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Equation (1.18) can be rewritten in form 
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Here [ ]LAMQ0 is the stiffness matrix of the undamaged laminate calculated as in the 

classical laminate theory (CLT). { }LAM
0ε is the strain in the undamaged laminate 

corresponding to the same applied load { }LAMσ . 

Substituting Equation (1.17) in Equation (1.20) gives the final form for damaged laminate 

thermo-mechanical stress – strain response: 
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1.2.5 Stiffness and Compliance Matrices of the Damaged Laminate 

Assuming only mechanical loading (∆T = 0) in equation (1.21) and using  

 

    { } [ ] { }LAMLAMLAM S σε 00 =        (1.22) 

gives  
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Expressing laminate stress from Equation (1.23) gives: 
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where ][I is the identity matrix. 

Comparing (1.24) with Equation (1.1), with 0=∆T , the stiffness matrix and 

corresponding compliance matrix for the damaged laminate are found to be 
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These expressions may be used to calculate the degradation of mechanical properties for 

the damaged laminate.  

 

 

1.2.6 Thermal Expansion Coefficients of the Damaged Laminate 

If the reductions in thermal properties are of interest a derivation based on thermal 

loading only has to be done. Applying thermal loads only, the global laminate stresses are 

equal to zero, and Equation (1.20) allows determining the thermal expansion strains of 

the damaged laminate. 
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Applying Equation (1.17) in (1.27), the following relationship can be obtained. 
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By dividing Equation (1.28) by ∆T, the final expression for the thermal expansion 

coefficient for the damaged laminate is obtained. 
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where 
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1.3  Thermo-Elastic Properties of Laminates with Cracks in 90-layers 
 

In balanced and symmetric laminates with cracks in 90-layers only the matrix 

relationships for stiffness and thermal expansion coefficients may be simplified and 

expressed in explicit form. We consider a particular case often used in research when the 

90-layer with crack density ρn is in the middle of the laminate. The set of layers 

surrounding the 90-layer on either side may be considered as a sublaminate with thermo-

elastic properties calculated using CLT and denoted by upper index  s . Using 90-layer 

properties in the local system and denoting thickness of the sublaminate and 90-layer by 

t s  and t90 , respectively, we obtain, after tedious work, the following relationships for 

engineering constants of the damaged laminate. 
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In (1.37) and (1.38) Sij
are elements of the compliance matrices. In particular case of 

cross-ply laminate, the sublaminate is the 0-layer, and,  

 

    SSs
xx 11= , SS s

yy 22
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xy 12
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x 1=    (1.39) 

Expression for GQ xy
LAM =66  of [S,90n]s   and [90n,S]s   laminates with cracks in 90-layer 

may be written in the following form 



 21

 
ann

s
s
xycr

crxy

xy

u
tGtG

tGG
G

1
12

12
0 2

1

1

ρ
+

+
=       (1.40) 

In this particular case only the CSD enters the expression for shear modulus. 

Equation (1.40) is valid for both “inside cracks” (use 290ttcr = , see Fig. 1.5 a)) and for 

“outside cracks” ( ttcr 90= , see Fig.1.5b)). We call a crack an inside crack if the cracked 

layer does not have a free surface and outside crack if it has a free surface.  Certainly, 

u an1  defined by equations (1.10), (1.11)  may be different for both types of cracks. 

For a cross-ply laminate with cracks in 90-layer only (the sublaminate is the 0-layer), the 

shear modulus can be expressed as 
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1.4 Crack opening (COD) and sliding (CSD) displacements 
 

The normalized COD and CSD of a crack in a cracked layer of a general laminate are 

affected by the material and geometrical properties of the materials surrounding the 

crack. For the COD case it was shown previously by Joffe et al., (2001) that u an2
  is a 

rather robust parameter and its value depends only on the stiffness ratio and thickness 

ratio of the constraining and cracked layers. Since it was possible to express this 

relationship in a form of a simple power law, this finding significantly simplified the 

laminate stiffness prediction procedure for cases when the COD is the governing 

parameter and the CSD may be neglected. The approach is actually similar to the 

“equivalent constraint model” described by Fan et al., (1993): In order to calculate the 

u an2
 of a crack in the local axes, where the cracked layer has a 90-orientation, we 

consider an artificial cross-ply laminate with layer properties as for the cracked- and the 

closest constraining layer and determine the COD using the power law. In this paper the 
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objective is to investigate the parameters affecting the CSD and to describe the 

dependence by simple expression.  

FE calculations were used to perform parametric analysis of the main factors governing 

the value of the normalized crack opening and sliding displacements; For all FE 

calculations the commercial code ANSYS 9.1 was used. In order to model the repeating 

volume element (see Figure 1.3), a 3-D model was created. The SOLID185 elements 

were used in all calculations.  The main motivation for choosing a 3-D model was to use 

the same elements for all 3-D calculations (two orthogonal crack systems) and for 

generalized plain strain case (one system of cracks). 

Analyzing crack opening COD two geometrical configurations were considered; see Fig. 

1.3 for geometry and boundary conditions modeled. In the first the cracked layer is in the 

middle of the laminate (inside crack) and in the second case the crack is in the surface 

layer (outside crack). The upper boundary of the laminate was always traction free. 

Analyzing the COD the crack density was always chosen small enough to get non-

interacting cracks ( 52 900 =tl  for inside cracks) and the number of elements was 6400. 

Analysis of crack interaction was left for later. The stiffness ratio between the sub-

laminate and 90-layer as well as the layer thickness ratio were varied. Fig. 1.3 represents 

a quarter of the RVE defined in Fig. 1.1. For more detailed analysis and parameter study 

using plane stress formulation, see Joffe et al., (2001). For outside crack, the sub-laminate 

and 90-layer have interchanged places. 

 

 
 

 

Figure  1.3. Load cases used for determination of average crack face opening 

displacement. 
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Calculating the crack face sliding displacements the commercial code ANSYS 11.1 was 

used. Since symmetry is applied on the surface z = 0, see Fig. 1.5, 3D model was created 

that corresponds to the upper half of the real RVE containing one crack in 90-layer. The 

boundary conditions applied to the RVE can be seen in Fig. 1.6. The top and bottom 

surfaces 2hz ±=  are traction-free. Tangential displacements are applied to the side 

surfaces (edges). The relationship uy0/2l90=ux0/w and displacement coupling were applied. 

It means that points on the surface at y=-w has the same displacement in z and y-direction 

as the corresponding points on the surface at y=0. In the same way the points on the 

surfaces at x=-l90 and x=l90 have the same displacement in z and x-direction. The 3-D 8-

node structural solid element SOLID185 with three degrees of freedom for each node 

was used and the number of elements was 21000. At first, a series of calculations were 

performed changing the distance between two cracks to see when the cracks start to be 

non-interactive. The condition for non-interacting cracks was that the in-plane shear 

stress was constant with respect to z at y=-w/2, x=l90  in the coordinate system in Fig. 1.5 

and 1.6. 

 

1.4.1 Determination of Constants in Power Law for COD 

In this work, the normalized crack face opening displacement introduced in Equations 

(1.10), (1.11) is fitted by a power law as follows. 
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This implies that in-log-log axes there is a linear relationship 
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A series of FEM-calculations were performed and shown the relationship is rather linear 

for all possible combinations of geometrical and other material parameters. FEM data 

were used to determine the constants in Equation (1.42). The displacement in x-direction 

for the nodes at the crack surface was used to calculate the average value of the crack 

face displacement, u2a. That value was then normalized with respect to thickness of the 

cracked layer and the far field stress in the layer transverse to the crack plane according 

to Equation (1.12). The obtained constants are different dependent on the position of the 

cracked layer. The two power laws for inside and outside cracks respectively are given 

below. 

For inside crack: 
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For outside crack: 
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The normalized COD’s for inside and outside cracks versus layer stiffness ratio in case of 

[S,90]s and [90,S]s laminate is shown in Fig. 1.4. Both, directly calculated by FEM and 

from the power law are in a very good agreement: the power law gives a very good 

description of the COD’s for both crack systems. The normalized COD of the outside 

crack is significantly larger and both crack types show strong dependence of COD on the 

surrounding layer thickness. The increasing constraint due to stiffer surrounding layers 

may lead to 30% reduction of the COD as compared to crack surrounded by an isotropic 

medium. The values corresponding to solution for a periodic system of cracks in an 

infinite transversally isotropic medium used in Gudmundson et al. (1993) are also shown 
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for comparison. Obviously, they do not depend either on the relative stiffness of layers 

nor on their thickness. The thickness of the constraint layer has a similar effect as its 

stiffness: increase leads to smaller normalized COD. 
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Figure 1.4. The dependence of the normalized crack face opening displacement u2an on 

the layer stiffness ratio for both inside([S,90]s 2ts=t90) and outside crack([90,S]s ts=t90) . 

Fitting by power law (PL). 

 

 

1.4.2 Determination of parameters in power law for crack face sliding displacement 

CSD 

The two geometries used in parametric studies are shown in Fig 1.5.  

We found u1an by calculating the sliding displacement uy distribution along the z-

coordinate at the crack surface by FEM and determining the average sliding displacement 

using equation (1.10). Then equation (1.11) was used for normalization.  
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Figure 1.5. FE-models for calculation of sliding and corresponding shear modulus. 

 

 
Figure 1.6. Top view: Applied boundary conditions used for pure shear modelling. 

 

The three different materials used in the parametric analysis and in simulations (next 

section) are defined in Table 1.1. 

 

Table 1.1. Material properties used in calculations. 
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material E1 

(GPa) 

E2 

(GPa) 

υ12 υ23 G12 

(GPa) 

G23 

(GPa) 

Lamina thickness 

(mm) 

GF/EP 45.0 15.0 0.30 0.40 5.00 5.36 0.100 

CF/EP-1 137.0 8.39 0.38 0.47 8.04 2.85 0.132 

CF/EP-2 145.0 10.6 0.27 0.40 6.90 3.70 0.100 

 
 

To start with, all parameters that affect the sliding displacement were found. This was 

done in a series of FE-calculations changing the material parameters and geometry and 

calculating the laminate shear modulus. This is an indirect method of finding the 

parameters that affects the sliding, i.e no change in shear modulus implies no change in 

the CSD.  The obtained results for a [02,902]s laminate with inside cracks are given in 

Table 1.2 below.  

 

Table 1.2. Results from parametric study for [02,902]s laminate, ρ= 0.25 cracks/mm. 

 

 

The parametric study shows that only the in-plane shear modulus ratio between the sub-

laminate and the 90-layer and the ratio t90/2ts has influence on the in-plane shear modulus 

of the laminate and on the CSD. All other stiffness ratios and Poisson’s ratios between 

the 90-layer and the sub-laminate do not influence the reduction in the in-plane shear 

modulus.  

Then the effect of the significant parameters was quantified. To simplify the semi-

empirical expression for the CSD which is obtained based on these results, the 

E1 

(GPa) 

Gxy 

(GPa) 

 E2 

(GPa) 

Gxy 

(GPa)

υ12 Gxy 

(GPa)

υ 23 Gxy 

(GPa) 

 G23 

(GPa) 

Gxy 

(GPa) 

20 4.803  10 4.803 0.20 4.803 0.25 4.803  4 4.799 

30 4.803  20 4.803 0.35 4.803 0.35 4.803  5 4.802 

60 4.803  30 4.804 0.40 4.803 0.55 4.803  6 4.805 
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consideration was limited to cracks in a layer which are non-interactive. This means that 

the distance between the cracks was large enough to avoid the stress-perturbations from 

two neighboring cracks in the same layer to overlap. A consequence may be a decreased 

accuracy of predictions (still conservative) at large crack densities. 

The crack density (2l90/t90 =10) was defined as non-interactive based on these calculations 

and used in the parametric study where the material properties and geometry were 

changed. The crack related stress perturbation region slightly decreases with increasing 

shear modulus and thickness of the constraint layer. The chosen non-interactive crack 

density insures that cracks are non-interactive in the used region of parameters. 
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Figure 1.7. Sliding displacement profile for GF/EP [02,902]s laminate at 1% applied 

shear  strain,  k = 2l90/t90. 

 

The profile of the crack surface sliding displacements can be seen in Fig. 1.7 for a GF/EP 

[02,902]s laminate for three different crack densities and y=-w/2. Indeed, with increasing 

distance between cracks the sliding displacement approaches to an asymptotic value 

characterizing non-interactive cracks. 

In Fig. 1.8 the sublaminate Sn has properties of 0-layer of GF/EP in Table 1.1 excluding 

the in-plane shear modulus which is used as a variable parameter.  
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Figure 1.8a. The power law (PL) compared with direct FE-calculations for GF/EP with  

                  inside cracks. 
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Figure 1.8b. The power law (PL) compared with direct FE-calculations for GF/EP with  

                  outside cracks. 

 

The dependence of the CSD in Fig. 1.8 on shear modulus of the sublaminate is rather 

smooth and the values are rather different for inside and outside cracks. A general 
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observation is that the CSD decreases with increasing shear modulus and thickness of the 

constraining layer. The dependence on the modulus ratio is almost linear. 

The reference set of material parameters is as for GF/EP, which means that only one 

property is changed at the same time while the other properties are as for GF/EP. The 

results of the parametric study indicate that a simple and sufficiently accurate expression 

for u1an as a function of G12/Gxy
s
 and t90/2ts may be found thereby avoiding time-

consuming FE-calculations. 

 

The following power law expression was obtained in attempts to fit the normalized 

average crack face sliding displacement data presented in Fig. 1.8. The fit is based on the 

FEM results for non-interacting cracks (2l90/t90 = 10).  
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Applying a linear fit to the calculated u1an versus stiffness ratio data in log-log axes gives 

the values of the parameters A, B and n. It was found that A and n can be approximated 

by constants and B by a linear function of thickness ratio for both inside and outside 

cracks.  
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-Outside cracks 
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According to (1.46), (1.47), (1.48) the normalized average CSD of, for example, [0,90]s 

cross-ply laminate is almost exactly two times smaller than for [90,0]s laminate which has 

the same total thickness of the 90-layers and 0-layers. However, according to (1.15) the 

effect of one crack on the laminate shear modulus is almost the same in both laminates: 

the calculated CSD is multiplied in equations (1.40), (1.41) by the normalized crack 

density which is for the same crack spacing two times larger in [0,90]s laminate. 

According to Fig. 1.8a and 1.8b the accuracy of the power law for different laminate lay-

ups and used shear modulus values for sub-laminate is very good. The shear modulus of 

the constraining sublaminate is usually not less than the one of the 90-layer. This is the 

reason why the interval of the shear stiffness ratio <1 is used for determination of the 

parameters in the power law. An exception is a cross-ply laminate with damaged 0-layer. 

To see whether the power law is still applicable it was compared with FE-calculation 

when the shear modulus ratio 2/12 =GG s
xy  and the difference was around 4 %. This 

seems acceptable due to the fact that it is an extreme situation and that a change in sliding 

of 4% gives a change in shear modulus less then 1 %.    

 

 

1.5 Validation of the analytical simulation tool 
 

1.5.1 Validation using FEM results regarding the thermo-elastic properties of 

damaged laminates 

FE calculations were used to render data for validation of the developed analytical  model 

for thermo-mechanical properties of  laminates with intralaminar cracks. 

In predictions for damaged cross-ply laminates the expressions in matrix form for 

damaged laminate stiffness (1.25) and thermal expansion coefficients (1.29), (1.30) were 

used along with power law expressions (1.42),(1.44) (1.45) and (1.46)-(1.48). Predictions 
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for laminates with cracks in 90-layer only are validated comparing with results from 

direct FEM calculations and further, see Section 1.5.2,  verified comparing with 

experimental data obtained in our laboratory or found in literature. Comparison is made 

for different types of glass fiber/epoxy and carbon fiber/epoxy systems and different 

laminate lay-ups.  

 

COD dependent thermo-elastic properties 

The five materials used in COD dependent properties simulations are defined in Table 

1.3. 
 

Table 1.3.  Material properties for materials used for calculations and validation. 

Materials E1 

(GPa) 

E2 

(GPa) 

G12 

(GPa) 

υ12 α1             

(10-6 

1/ºC) 

α2         

(10-6 

1/ºC) 

Lamina 

thickness 

(mm) 

GF/EP1 46.50 22.82 8.60 0.30 10.00 20.00 0.150 

GF/EP2 41.70 13.00 3.40 0.30 - - 0.150 

GF/EP3 44.73 12.76 3.50 0.30 - - 0.138 

GF/EP4 44.73 12.76 3.50 0.30 - - 0.148 

CF/EP 138.00 10.30 5.50 0.30 0.43 25.87 0.125 

 

First laminates with one crack system only were considered. The goal was a) to validate 

the developed general expressions for calculation of all thermo-elastic constants of the 

damaged laminate and b) to study the crack interaction effects in order to establish the 

crack density region where the concept of non-interactive cracks and the obtained power 

law can be used. Predictions of properties degradation were compared with direct FEM 

results. Considering cross-ply laminate with cracks in 90-layer only the axial 

modulus Ex , Poisson’s ratio ν xy  and the thermal expansion coefficient α x were 

calculated using Equations (1.31) - (1.41). The general expressions (1.25) and (1.29), 

(1.30) were also used and the results were as expected identical. Predictions of the axial 

modulus, Poisson’s ratio and thermal expansion coefficient are presented in a normalized 

form for [0,90]s GF/EP1 laminate in Fig. 1.9. Results of direct FE calculations in 
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generalized plane strain formulations are also presented there. Obviously model 

predictions have very high accuracy in non-interactive crack density region. Since the 

high accuracy of the power law for COD was already established this proves the validity 

of the used relationships between global material response and local field parameters. 

With increasing crack density deviations can be noticed: model, which uses COD’s of 

non-interactive cracks, predicts too large change of thermo-elastic properties. Noticeable 

deviations for the considered laminate start at crack density larger than 1.5 cr/mm.  

Attempt to improve predictions using the crack interaction function for system of cracks 

in an infinite medium suggested by Gudmundson et al.,(1993) failed: the interaction 

using his model is significantly overestimated. 
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Figure 1.9. Thermo-elastic properties degradation in GF/EP1 [0,90]s cross-ply  laminate 

due to cracks  in 90-    layer. 

 

Secondly, cross-ply laminates with two orthogonal systems of cracks were investigated, 

see Fig. 1.1.  
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Since no elastic modulus data for laminates with two orthogonal systems of cracks are 

available, comparison in this case is made with Hashin’s model and with 3-D FEM 

calculations with a very fine mesh. The same crack density 52 009090 == tltl  

corresponding to non-interactive case was used in both layers. The stiffness of [0,90]s 

cross-ply laminate with cracks in both 90 and 0-layer was calculated with the same 

number of elements in x,z- and y,z-plane. The total number of elements used was 36000 

and for one particular case even 80000. In other words the number of elements in the 

mesh was varied to find the most suitable mesh, taking both the calculation time and 

accuracy into consideration. 

 

Here one of the goals was to investigate the interaction effects between cracks belonging 

to different crack systems. This is of importance because equations in Section 1.2 are 

valid also for interactive cracks but the power law for COD is established neglecting any 

interaction. From the analysis presented above we know the interaction distance between 

cracks belonging to the same crack system.  

Considering the interaction between a crack in 90-layer and a crack in 0-layer we can 

expect that crack in, for example, 0-layer will slightly reduce the average stiffness of this 

layer. According to performed COD analysis this will result in a slightly higher opening 

of the crack in the other layer, which implies that the stiffness using a very fine 3-D mesh 

should be slightly lower than the predicted by power law.  

 

The reduction in elastic properties for laminates with cracks in both layers is summarized 

in Table 1.4. At first the difference between results is about 0.1% for E-moduli and 

thermal expansion coefficients and about 2% for Poisson’s ratios. The second observation 

is that a very fine mesh leads to systematically slightly lower values than using analytical 

model. That may indicate an interaction effect between these two orthogonal cracks but 

may also be due to the mesh refinement or the approximate nature of the power law. 

Since the difference is small we conclude that the interaction effects between cracks in 

90-layer and 0-layer may be neglected. Using mesh with 80000 elements led to further 

decrease of normalized E-modulus from 0.9151 to 0.9144. 
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Table 1.4. Comparison between FEM and the present model for GF/EP1 [0,90]s cross-

ply laminate with  cracks in both 0- and 90- layer. 

 

 FEM model 

Ex/Ex0 0.9151 0.9162 

Ey/Ey0 0.9076 0.9072 

vxy/vxy0 0.7982 0.8195 

vyx/vyx0 0.7935 0.8114 

αx/αx0 0.9557 0.9576 

αy/αy0 0.9521 0.9534 

 

 

Comparison between the developed model and Hashin’s variational model (Hashin, 

1987) based on results for GF/EP2 [0,90]s laminate with the same number of cracks in 

both layers is presented in Figure 1.10.  
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Figure 1.10. Elastic properties degradation in GF/EP2 [0,90]s cross-ply laminate due 

to cracks in 0- and 90- layer. 

 

The Young’s modulus reduction predicted by Hashin’s model is significantly lower than 

according to our model which we believe is more accurate. The too low modulus 

predicted by Hashin’s model is a consequence of the used very simple stress 
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approximations in combination with the principle of complementary energy which gives 

lower bound to the exact solution. Hashin’s predicted Poisson’s ratio is incorrect because 

of his erroneous definition of the average transverse strain in corresponding expression 

for Poisson’s ratio. 

 

CSD related properties 

The shear modulus simulations reported below are divided into two sections. The first 

considers cracks in only one layer (inside or outside) whereas the second one deals with 

two orthogonal systems of cracks. Equation (1.25) easily deals with cracks in several 

layers at the same time but the COD’s and the CSD’s must be modified. They can still 

be calculated using the power law expressions but the constraint layer effective stiffness 

must be reduced to account for the damage in the constraint layer. An iterative procedure 

has been used to calculate the interaction of cracks belonging to different layers. 

 

Simulating shear modulus reduction in laminate with one system of cracks the power 

law equation (46) with the obtained parameters (1.47) and (1.48) was used in equation 

(40) to predict the shear modulus of a [Sm,90n]s and [90n,Sm]s laminates with transverse 

cracks in 90-layer. The notation Sn was explained earlier. In Fig. 1.11, the modulus 

predictions from the model are compared with direct FE-calculations for inside cracks. 

In Fig. 1.11a the shear modulus ratio G12/Gxy
s =1 and in Fig. 1.11b G12/Gxy

s =0.5. Fig. 

1.12 shows the accuracy of the model for outside cracks, G12/Gxy
s =1.  

 

The reduction in shear modulus due to transverse cracks is predicted with a high 

accuracy. The reduction is higher in Fig. 1.11a due to lower shear modulus (smaller 

constraining effect) from the undamaged layer. 
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Figure 1.11a. Reduction in shear modulus due to transverse cracks in 90-layer from   
                  direct FE-calculations and model for GF/EP, G12/Gxy

s =1. 
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Figure 1.11b. Reduction in shear modulus due to transverse cracks in 90-layer from    
                  direct FEM-calculations and model for GF/EP, G12/Gxy

s =0.5. 
 

The model prediction for low crack densities is excellent but for large crack densities a 

small deviation is observed. This is probably because the cracks start to interact.  
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Figure 1.12. Reduction in shear modulus due to transverse cracks in 90-layer from   
                direct FE-calculations and model for GF/EP, G12/Gxy

s =1. 
 

 

In Fig. 1.13 the FE-model is compared with Tao’s and Sun’s (1993) FE-calculations for 

[02,90]s CF/EP1 . The agreement is excellent. Their results are taken from a plot which 

makes it difficult to find the values with a high accuracy, but they are accurate enough to 

prove that our FE-model predicts the same shear modulus as their. Fig. 1.13 is a 

validation that the power law is applicable also for CF/EP systems. 

The model is compared with Hashin’s model (1985) in Figure 1.14. The result is as 

expected; his model gives a lower bound of the solution and therefore overestimates the 

shear modulus reduction of the laminate. 

 

The shear response of cross-ply laminates with cracks in both 0- and 90-layers has 

been previously analyzed in the framework of a shear lag model in Tsai et al.(1990), 

Henaff-Gardin (1996), Kashtalyan et al. (2000). It was shown by Kashtalyan et al., 

(2000) that the “superposition of solutions” suggested in Tsai et al. (1990) leads to large 

errors. 
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Figure 1.13. Model predictions and FE-calculations compared with Sun and Tao’s FE- 
                calculation for CF/EP-1 [02,90]s laminate.  
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Figure 1.14. Comparing model prediction with Hashin’s model for GF/EP [02,902]s 
laminate. 
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Superposition means that the shear modulus reduction due to 90-cracks only is added to 

the laminate shear modulus reduction due to 0-cracks only. Since Lundmark et al. (2005) 

demonstrated using FEM that this approach is very accurate when considering Young’s 

moduli and Poisson’s ratios of the cross-ply laminate, this question deserves a special 

discussion.  The COD of cracks in the 90-layer which governs the elastic modulus 

reduction depends on the axial stiffness ratio of both layers. However, the effect of 

cracks in the 0-layer on the effective axial stiffness of the 0-layer is negligible. In 

contrary cracks in the 0-layer have a very large effect on the effective shear stiffness of 

this layer which governs the CSD of the crack in the 90-layer. In result the CSD is larger 

if the presence of cracks in the constraint layer is accounted for.   

Therefore, calculating the crack face sliding displacement CSD according to the power 

law (46) the effective shear modulus of the neighbouring layer has to be used if these 

layers have cracks. It can be achieved using an iterative procedure.  

In first iteration the interactive CSD’s of a 0-layer crack and a 90-layer crack in a 

[0n,90m]s laminate may be obtained following the procedure described below. The index 

in parenthesis denotes the current iteration. 

a) Crack face sliding displacement of the crack in the 0-layer, CSD-0(1). 

In order to calculate CSD-0(1) we first have to determine the effective shear modulus of 

the neighbouring 90-layer with cracks. Therefore we consider a crack in the 90-layer and 

calculate, using the power law given by equations (1.46) - (1.48), the CSD of the 90-

layer crack assuming that the effective shear modulus of the 0-layer Geff
°0  equals to the 

initial shear modulus of the 0-layer, GGeff
°° = 00 )0(  . Since the calculated value, which we 

are denoting CSD-90(0), is obtained without accounting for cracks in the sublaminate it 

is a zero approximation. We can use CSD-90(0) to calculate using equation (1.40) the 

shear modulus )1(GLAM of the [0n,90m]s laminate with cracks in 90-layer only.  Now the 

effective shear modulus of the damaged 90-layer can be back-calculated using the CLT. 

2/
)0()1()2/(

)1(
90

0
090090

t
GtGtt

G eff
LAM

eff

°−+
=

o

  (1.49) 

Finally the CSD of the 0-layer crack, CSD-0(1) can be calculated applying equations 

(1.46) - (1.48) and using )1(90Geff
°  as the effective shear modulus of the 90-layer.  
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b) Crack face sliding displacement of the crack in the 90-layer, CSD-90(1). 

This time in order to use equations (1.46) - (1.48) we need the effective shear modulus 

of the neighbouring 0-layer with cracks. Therefore we first consider a crack in the 0-

layer and calculate, using the power law given by equations (1.46) - (1.48), the CSD of 

the 0-layer crack assuming that the effective shear modulus of the 90-layer Geff
°90  equals 

to the initial shear modulus of the 90-layer, GGeff

°° = 9090 )0(  . Thus the calculated value 

CSD-0(0) is obtained without accounting for the cracks in the 90-layer. We can use 

CSD-0(0) to calculate using equation (1.40) the shear modulus )1(GLAM of the [0n,90m]s 

laminate with cracks in the 0-layer only.  Now the effective shear modulus of the 

damaged 0-layer can be back-calculated using the CLT. 

t
t eff

LAM

eff

GGtt
G

0

90
909000 )0(2)1()2/(

)1(
°

° −+
=   (1.50) 

Finally the CSD of the 90-layer crack, CSD-90(1) can be calculated applying equations 

(1.46) - (1.48) and using )1(0G °  as the effective shear modulus of the 90-layer.  

This procedure can be repeated infinite number of times and hopefully it is converging 

to some asymptotic value.  In Figure 1.15, the CSD for both inside and outside cracks is 

presented as a function of crack density (same crack density in both layers). The 

assumption that both crack systems are non-interacting gives horizontal lines, i.e. CSD 

of a crack is independent of crack density. If the iterative procedure is used, the crack 

face sliding increases with an increased damage level in the neighbouring layer. The 

result is shown after the first and the second iteration and may be compared with FE-

calculations for 2.5 cracks/mm. It can be seen that after two iterations the CSD does not 

reach the values from the FE-calculations. The difference between the first and the 

second iteration is small in comparison with difference between the non-interacting 

assumption and the first iteration step.   
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Figure 1.15. Sliding displacements for both inside cracks (ic) and outside cracks (oc) in 
a   GF/EP [02,902]s laminate. Iterative procedure compared with FE-calculations  
                   and non-interacting assumption. 
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Figure 1.16. Predictions of the reduction in shear modulus for two systems of cracks in     
                  GF/EP [02,902]s laminate.  
 
 

In Fig. 1.16 the shear modulus predictions are compared with FE-calculations for cracks 

in both 90 and 0-layer. The crack density is the same in both layers. Fig. 1.16 shows that 

the model underestimates the effect of crack interaction on the reduction in laminate 
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shear modulus and it is due to the difference in sliding from FEM and model shown in 

Fig. 1.15. The source of this difference is unclear at present. May be at high crack 

density the effective shear modulus of the cracked layer in the power law is not a good 

descriptor of the interaction between two systems of cracks. 

 

 

1.5.2 Validation of the Model using Experimental Data 

The developed analytical tool is also compared with experimental data for different lay-

ups and materials. Considering stiffness of laminates with cracks in 90-layer only, shown 

in Fig. 1.17 to 1.19, we see that the predictions are in good agreement with test data. 

Observed deviations may serve for more detailed analysis of the model and of the 

features of the phenomena. For example, in Fig. 1.17 the reduction of modulus and 

Poisson’s ratio of the damaged [02,902]s laminate at large crack densities is slowing down 

as compared with the model which is a clear indication of the interaction between cracks. 
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Figure 1.17. Reduction in elastic properties for GF/EP3 [02,902]s  cross-ply laminate. 
Experimental data compared  with model predictions.     
 

Similar plots for [0,902]s laminate in Fig. 1.18 show the opposite trend: at high crack 

density the experimental values start to go down faster. We explain this trend by local 

delaminations at the tip of transverse cracks which start at high loads and which is more 

pronounced in laminates with large ratio of damaged and supporting layer thickness. So 

the different layer thickness ratio makes the difference between laminates in Fig. 1.17 

and 1.18.  
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 Figure 1.18. Reduction in elastic properties for GF/EP3 [0,902]s  cross-ply laminate. 
Experimental data compared  with model predictions. 
 
 
 
The model also seems to predict the stiffness reduction for off-axis sublaminate in a good 

agreement with experimental data, see Fig. 1.19.  
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Figure 1.19. Reduction in elastic properties for GF/EP4 [30,-30,904]s laminate. 
Experimental data compared with model predictions. 
 

 

Next the thermal expansion coefficients were compared with data and predictions given 

in (Kim et al., 2000). For CF/EP cross-ply laminates with one system of cracks, Fig. 1.20, 

our predictions are in a very good agreement with experimental data and coincide for low 

crack densities with predictions based on model in Schoeppner et al., (1998). At large 

crack densities the difference between predictions increases. However, even if 

conceptually incorrect for high crack density, our non-interactive COD based predictions 
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are approximately as good compared to test data as the results of the interactive model 

Schoeppner et al., (1998). Data and predictions according to both compared models for 

double-cracked cross-ply laminate are presented in Table 1.3. Even in this case our 

predictions are rather good and closer to experimental data than model by Schoeppner et 

al., (1998). 
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Figure 1.20. Reduction in thermal expansion coefficient for CF/EP [02,902]s cross- ply 
laminate. Model compared with model and experiment from (Kim et al., 2000). 
 
 
Table 1.5. Reduction in thermal expansion coefficients for CF/EP [02,902]s cross- ply 
laminate with cracks in both 0- and 90-layer. 

 
ρ90 

 

ρ0 
 

αx/ αx0 αx/ αx0 
 

αx/ αx0 αy/ αy0 
 

αy/ αy0 
 

αy/ αy0 
 

cracks/m cracks/m model Ref [12] 
model 

Ref [12] 
exp 

model Ref [12] 
model 

 

Ref [12] 
exp 

670 390 0.73 0.64 0.72 0.79 0.69 0.78 
940 670 0.61 0.56 0.58 0.65 0.60 0.74 

 
 

Shear modulus of a damaged laminate is analyzed in Fig. 1.21 where the model 

predictions are compared with predictions and experimental data for inside cracks from 

Tsai’s and Daniel’s experiment (1992). Their expression for shear modulus reduction 

coincides with Hashin’s expression and the agreement between the model and 



 48

experimental data is excellent. Since we know from Fig. 1.14 that the predictions of the 

Hashin’s model are too low it is not surprising that our predictions which are also 

presented in Fig. 1.21 show smaller shear modulus reduction. In result we have to 

question also the accuracy of the experimental data in Tsai and Daniel et al., (1992). 

Obviously it is very difficult to perform a shear testing of damaged laminates and 

therefore any attempt is highly appreciated. The problem may be with the data reduction 

in Tsai and Daniel et al., (1992). The damaged tensile cross-ply specimen which is loaded 

in in-plane shear (one cross-section is fixed and to another-one is applied a constant 

tangential in-plane displacement) was described as a Timoshenko beam, which is rather 

questionable for the length/width ratio used in the test set-up. Another possible source of 

inaccuracy of the data reduction is that the axial modulus of the damaged laminate, which 

is also required in the data reduction expressions, is calculated using a shear lag-model. 
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Figure 1.21. Model predictions compared with experimental data and model for inside 
cracks  from Daniel and Tsai for CF/EP-2 [0,902]s laminate. 
 

 

1.6 Range of validity of the analytical approach 
 

The presented model is developed in the framework of elasticity. The well known shear 

nonlinearity of UD composite, which mainly is caused by visoelastic and viscoplastic 
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effects, certainly affects the nonlinear stress-strain response of the laminate at high 

stresses. Therefore, it has to be emphasized that the presented expressions (1.25), (1.29), 

(1.30) describe the residual stiffness of the damaged composite measured at small strains 

after viscoelastic relaxation.  In other words, laminate may be damaged at high applied 

load with all nonlinearity effects present, but the stiffness measurements are in a 

different test performed in the “linearity region”. 

Realizing the importance of crack face sliding in stiffness reduction, the effect of friction 

becomes an issue. Friction would reduce the CSD and would lead to smaller stiffness 

reduction. However, it has to be noted that the term “sliding” is used to describe the 

tangential component of the displacement together with COD which is the normal 

displacement. Since in most of laminates, excluding cross-ply in shear, COD is also 

present, sliding does not imply that the crack faces are in contact. It depends on the sign 

of the transverse to the crack component of the stress in the layer. The situation becomes 

even more complex if the damaged laminate is subjected to varying multiaxial loading: 

frictional contact boundary conditions may change to open crack conditions questioning 

the meaning of the term “residual stiffness”. More experimental evidence is required 

before deep studies of these effects are started.  However, it is always possible to 

estimate the upper bound of the effect of friction on the residual stiffness by performing 

two calculations for a multidirectional laminate: a) allowing free sliding and opening; b) 

allowing only opening and assuming zero sliding.  

Local inter-layer delaminations often develop at the tip of intralaminar cracks. They can 

be easy included in the presented stiffness calculation model through the value of the 

COD and CSD which is larger for cracks with delaminations. Parametric analysis would 

lead to new expressions for COD’s and CSD’s which would include also the size of the 

delamination. However, preliminary results show that small local delaminations (of size 

of 1-2 fiber diameters) have a negligible effect on the COD. If delaminations – interface 

cracks are not connected to intralaminar cracks their effect on diagonal elements of the 

extensional stiffness matrix of the laminate may be neglected because the main effect 

will be on the bending stiffness. The effect on laminate shear modulus may be predicted 

using the framework used here. The dependence of the interface crack face 

displacements on geometrical and elastic parameters has to be investigated numerically. 
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1.7 Conclusions for Chapter 1 
 

The stiffness matrix and thermal expansion coefficients of a laminate with intralaminar 

cracks in layers may be predicted with confidence using the exact expressions obtained in 

this paper. Relationships, expressing the laminate thermo-elastic properties dependence 

on density of cracks in layers in a matrix form, depend on thermo-elastic properties of 

layers, geometrical parameters characterizing laminate architecture and the normalized 

Crack opening displacement (COD) and crack face sliding displacement (CSD).  

The normalized COD and CSD are load independent and depend only on the constraint of 

the surrounding layers. Analysis of non-interactive cracks by FEM showed that COD and 

CSD are robust parameters which have a power law dependence on layer stiffness ( axial 

and in-plane shear moduli) and thickness ratio.  

The thermo-elastic properties predictions based on the developed analytical method are in 

excellent agreement with direct 2-D FEM calculations for cross-ply laminates with one 

system of cracks. The interaction between cracks of the same system is significant at 

large cracks densities and must be included in the approximate expressions for 

normalized displacements. 

The applicability of the power laws, obtained analyzing non-interactive cracks (only one 

system of cracks present and the distance between cracks is large), in problems with 

several crack systems and large crack density was inspected comparing predictions with 

direct 3-D FEM calculations. 3-D FEM calculations for cross-ply laminates with two 

orthogonal crack systems showed that the interaction between cracks belonging to layers 

with different orientation is negligible when the laminate axial modulus is calculated 

whereas it is significant calculating the laminate shear modulus.  

The model is also in a good agreement with experimental data. However, agreement at 

large crack densities could be improved, introducing a function accounting for crack 

interaction. To be able to predict the reduced elastic properties for a more complex 

laminate, the crack face sliding displacement has to be analyzed, which is left for a 

separate paper. 
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2. Modeling UD composite stiffness reduction due to multiple fiber 
breaks and interface debonding 
 
2.1 Introduction 

 
Multiple fiber fractures are observed in unidirectional (UD) long fiber composites loaded 

in fiber direction. The number of fiber cracks grows with increasing load and each 

individual fiber crack can be accompanied by fiber/matrix debonding in the proximity of 

the crack. An alternative is matrix yielding at the interface in this high shear stress region. 

The fiber fracture is governed by the statistical nature of the fiber strength distribution 

and the globally and locally (stress concentrations due to breaks in neighboring fibers) 

increasing stress. The debond growth along the interface in fatigue and/or increasing 

macroscopic loading conditions is most probably governed by fracture mechanics 

parameters.  

In this chapter the damage evolution modeling is not considered. Realizing the briefly 

listed reasons for the existing damage state and leaving the simulation of it for a further 

study the analysis here is focused on determination of the effect of the damage state on 

elstic properties of the UD composite. 

 A large number of research papers have been published on description of the stress 

transfer from matrix into fiber at the fiber break. Analysis have been analytical, see for 

example, Cox, (1952), McCartney, (1987), Wu et al., (1998) as well as numerical ( Xia et 

al., 2002) with more focus on short fibers or on the description of the single fiber 

fragmentation test.. These studies are relevant to the topic of this paper because the 

average stress in a fiber which may be calculated from the stress distribution is directly 

linked to the elastic modulus of the damaged composite. 

In contrast to the papers which deal with stress distribution models, in this paper we 

develop relationships which link the entire stiffness matrix of the damaged UD composite 

with two robust parameters from the local solution: average opening displacement (COD) 

of the fiber break and its sliding displacement (CSD) both normalized with respect to the 

size and to the far field stress in the fiber.   
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In order to use these expressions we need to know the dependence of COD, CSD on fiber 

and matrix properties, fiber content, debond length etc. This information can be obtained 

from available analytical stress transfer models. However in this paper we extract these 

dependences from FEM parametric analysis performed on a model consisting of three 

concentric cylinders: a) broken fiber; b) matrix cylinder around it; c) large effective 

composite cylinder surrounding them. The observed trends are described by simple fitting 

functions which with a high accuracy describe COD’s of perfectly bonded and partially 

debonded cracks. The analysis in this paper is limited by opening displacements only and 

considering cracks as non-interactive which makes the stiffness predictions conservative. 

 

2.2 Stiffness reduction modeling 

 
The stiffness matrix of the UD composite shown in Fig. 2.1 is given by the relationship 

between stresses, { }RVEσ  applied to the UD composite RVE and the corresponding strain 

response, { }RVEε .  

 { } ( )[ ] { }RVE
RVE

RVE DQ εσ =        (2.1) 

 

 

 

 

 

 

 

 

 

Figure 2.1. Schematic showing of the UD composite with randomly distributed fiber 

breaks 

 

 

 

RVEσ

RVEσ

RVEσ

RVEσ
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D  represents the damage state with fiber breaks which may be accompanied by 

fiber/matrix interface debonding. Two types of cylindrical elements may be recognized in 

the Representative Volume Element (RVE) of a UD composite. The first element group 

is fibers with orientation which coincides with the global axis of the composite RVE. 

Obviously in the case of a UD composite local and global coordinate systems coincide. 

The second is matrix regions which also have cylindrical form. Each element is 

characterized by its volume fraction in the RVE ( fV  and mV ), geometry of the element 

(circular cross-section of the fiber with radius fr ), constituent  stiffness matrices [ ] fQ and  

[ ]mQ  which are defined by  a linear elastic constitutive law  

 

{ } [ ] { }kkk Q εσ =  k=f,m       (2.2) 

 

In (2.2) { }kσ , { }kε  are strain and stress vectors for the k-th element. 

According to (A1.4) and (A1.5) in Appendix 1 

 

{ } { } { } { }a
mm

a
ff

k

a
kkRVE VVV σσσσ +== ∑      (2.3) 

 

Using averaged Hook’s law (A1.9) in (2.3) we obtain 

 

 
{ } [ ] { }∑=

k

a
kkkRVE QV εσ

       (2.4) 

Replacing in (2.4) volume averaged strain (over the element) by boundary averaged and 

Vakulenko-Kachanov tensor (A1.7) we obtain 

  

 
{ } [ ] { } { }( )∑ +=

k
k

ba
kkkRVE QV βεσ

      (2.5) 

Eq. (2.5) may be used to represent cracks in both, fibers and in the matrix. In the present 

study we will consider only fiber cracks, thus assuming that { } 0=mβ . The effect of the 

debonded interface at fiber breaks will be represented by increasing displacements of the 

crack surfaces. 
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The boundary averaged strain of an element is expressed through its surface 

displacements, see (A1.6). Hence in elastic problem it is a linear combination of strains 

applied to the RVE 
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Elements of the H-matrix are very complex functions of element properties, internal 

geometry of the RVE which may be obtained from numerical solution of the local 

problem. Generally speaking the H-matrix may change with damage evolving inside of 

the k-th element, which could be presented as  

 

 [ ] [ ] [ ]Dkkk HHH += 0
        (2.7) 

However, in the present study we assume that the second term in (2.7) is relatively small 

and neglect it. Hence  

  [ ] [ ]0kk HH =         (2.8) 

 

The { } fβ  vector for the fiber is expressed through crack face displacements which are 

proportional to the number of fiber breaks N  represented by normalized crack density 

fn r
L
N

=ρ , proportional to the far-field stress in the fiber { }f0σ (average fiber stress at 

the same applied load to the undamaged RVE in the absence of fiber break). Hence, it can 

be written in the following form 

 

 
{ } [ ] { } ff

fL

n
f U

E 0σ
ρ

β −=
       (2.9) 
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The longitudinal fiber modulus fLE  is introduced (2.9) to have the crack face 

displacement matrix [ ] fU  dimensionless. The “far field“ stress { }f0σ  can be expressed 

through the strain applied to RVE of an undamaged composite in the following form 

 

 
{ } [ ] { } [ ] { } [ ] [ ] { }00

000 RVEff
ba
ff

a
fff HQQQ εεεσ ===

    (2.10) 

Now 

 { } [ ] [ ] [ ] { }00
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n
f HQU

E
ε

ρ
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Substituting (2.6) and (2.11) in (2.5) we obtain 

  

{ } [ ] [ ] { } [ ] [ ] [ ] [ ] { }∑ −=
k

RVEffff
fL

n
fRVEkkkRVE HQUQ

E
VHQV 000 ε

ρ
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From (2.12) the stiffness matrix of the undamaged composite is 

 

 
[ ] [ ] [ ]∑=

k
kkk

RVE HQVQ 0
0        (2.13) 

Since for the applied stress { }RVEσ  the strain response of the undamaged composite will 

be  
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RVE

RVE S σε 0
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we obtain from (2.12) 
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Obviously the stiffness of the damaged composite is 
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2. 3 Form of the [ ]H k matrix 

 

Obviously, an accurate determination of [ ]kH  is one of the main difficulties in stiffness 

prediction of undamaged and damaged UD composites. The [ ]H k  -matrix is defined in 

the local axes of an element (fiber and matrix cylinders) and it defines the relationship 

between k-th element boundary averaged strains and the strains applied to the RVE.  

{ } [ ] { }RVEk
ba
k H εε =         (2.17) 

 

In UD composite each element has a form of a cylinder (with an axis in the L-direction) 

extending in this direction over the whole length of the RVE. Due to this feature some 

conclusions regarding the form of the [ ]H k  -matrix can be formulated. 

If only RVE
Lε is applied to the RVE, the strain in each element in the L-direction is equal to 

the applied strain. Consequently, the elements 11111 == mf HH . Applying to the RVE LAM
Tε  

only (with zero longitudinal strain and shear strain), the average strain in the L-direction 

in the element is equal to this strain component applied to the RVE (it is zero). Hence 

01212 == mf HH .  

We assume also that only applied RVE shear strains may cause non-zero boundary 

averaged shear strains in the element leading to 062612616 ==== HHHH . 

The boundary averaged strain in the T-direction in the cylindrical element at applied 
LAM
Tε  is a function of all parameters.  The dependence of 22H  on geometrical and 

stiffness parameters comes from solution of a complex 3-D problem. The above 

qualitative analysis leads to the following form of the H-matrix for fiber and for matrix  
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H-matrix constants in fiber and in the resin are not independent. One relationship 

between them may be obtained using the request of thermodynamics that the RVE 

stiffness matrix of the undamaged UD composite, see (2.13) has to be symmetric.  

Two more relationships come from the rule of mixtures (ROM) which exists between the 

RVE strains and boundary averaged strains in elements. The longitudinal strain ROM is 

satisfied automatically due to iso-strain state. The transverse strain ROM leads to two 

independent conditions. Details and derivation are given in Appendix 2. The formulated 

three conditions for mmff HHHH 21222122 ,,,   are used to express three of them through fH 22 . 
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As a very rough approximation and mainly to demonstrate the approach we can use 

constant stress models (CSM)  used in material mechanics to determine fH 22 . According 

to the constant stress model 
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From here 
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and   

m
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Similar assumptions regarding shear stresses lead to  
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Certainly more accurate estimations may be obtained using Concentric Cylinder 

Assembly model by Hashin et al., (1964), Hashin, (1983) or numerical solutions 

 

 

2. 4. Crack face displacement matrix [ ]U f  

 

The  [ ] fU matrix  is defined by (9) and its explicit form can me obtained analyzing { } fβ  

which is according to (A1.8) related to crack face displacements.  

In the local coordinate system the normal vector of the fiber crack face has only one 

component 

 11 ±=n  032 == nn        (2.26) 

 

Using definition we obtain 
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In (2.27) au1  and au2  are average displacements of fiber crack faces in the longitudinal 

and transverse direction respectively 
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In (2.28) u∆ is the displacement gap between two crack faces. 
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Introducing crack face displacements normalized with respect to the crack radius and the 

far field average stress in the fiber as 
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we can rewrite (2.26) as 
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Comparing (2.9) with (2.30) we see that [ ]U f which enters stiffness reduction 

expressions is 
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2.5. Factors affecting the normalized average crack opening 

displacement (NACOD) 
 

The value of  anu1  depends on the interface quality. If the fiber is debonded the crack 

opening may be significantly larger. NACOD depends also on fiber volume fraction, 

elastic properties etc. Micromechanical models developed to describe stress distribution 

in fiber fragments in SFF test may be used to evaluate the COD. As an alternative to 

approximate analytical models in this study we performed FEM calculations in axi-

symmetrical formulation to calculate the COD. The opening of the penny-shaped crack in 

longitudinal tension (applied strain 1%) was analyzed considering three concentric 
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cylinder model. The broken fiber is surrounded by a cylindrical matrix zone which is its 

turn embedded in a large cylindrical block of the effective composite, see Fig. 2.2. The 

surrounding composite cylinder is necessary to describe more adequate the effect of 

neighboring fibers on the local stress distribution. The effective composite properties 

were calculated using rule of mixtures and Halpin-Tsai expressions. Thus the fiber break 

effect on effective composite properties in the outer cylinder  was not included assuming 

that the NACOD is not sensitive to about 10% changes in the properties in this cylinder. 

This argument was also used to justify the use of simplified elastic properties expressions 

in this region instead of more accurate models like Hashin’s concentric cylinder assembly 

model (Hashin et al., 1964, Hashin, 1983) . 

FEM calculations were performed in ANSYS using an axisymmetric formulation. 

Element type used is the plane element, PLANE82, which is a 2-D, second order element 

with relatively high accuracy. A non-uniform mesh consisting of both triangular and 

rectangular elements was used. To obtain higher accuracy a refined mesh (of triangular 

elements) was used in the vicinity of the crack tip and at the end of the debonding zone.   

 

 

             
 a)   b) 

 

Figure 2.2 Schematic showing of the model geometry consisting of cylindrical fiber 

surrounded by matrix cylinder which is embedded in the composite with effective 

properties: a) perfectly bonded interface; b) partially debonded interface with debond 

length debl   
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There is a symmetry condition on  z = 0, ∈r [0, R], where R is the outer radius of the 

fiber-matrix-composite system. The axisymmetry is around the z-axis. Nodes on the side 

r = R, ∈z [0, L], are coupled in the r-direction. ( frL 90=  is the length of the fiber-

matrix-composite system in the axial direction which represents one half of the distance 

between two fiber cracks.). The thickness of the effective composite cylinder is fc rr 5= . 

The size of the matrix cylinder depends on the fiber volume fraction fV . Constant 

displacement is applied in the z-direction on z= L, ∈r [0, R].  

 

The NACOD was analyzed for isolated cracks ( 90/ =frL ) which are far enough from 

each other to exclude the stress field interaction effects on the anu1 . However, expressions 

presented above are not limited by the condition of non-interactive cracks. If several 

cracks in the same fiber would be interacting the NACOD would be smaller. Interaction 

between cracks in different fibers can also be analyzed but this is out of the scope of this 

paper and can not be performed using the three cylinder model used here. 

Sensitivity analysis was performed to identify some elastic properties of constituents 

which were expected to have small influence on COD and which could be fixed in the 

following parametric analyis. Transversally isotropic carbon fiber with 5 elastic constants 

was used. All (independent) properties are changed with 25%. The elastic modulus fLE  

affects the COD with about 10%  and fTE affects the COD with about 2%. The shear 

modulus fLTG affects the COD with about 2%. The Poisson’s ratios fLTν and ϕν fT  affect 

the COD with less than 1%. As far as the elastic properties of the matrix concerns, the 

Poisson’s ratio mν affects the COD with less than 1%. Although the elastic modulus, mE , 

is an independent variable there is no need for a sensitivity analysis because in the 

parametric analysis all elastic moduli will be normalized with respect to it. 

Similar conclusions regarding the significance of Poisson’s ratios were obtained for glass 

fiber composites. It was decided to exclude these parameters from the list of parameters 

and to assign to them fixed values 2.0=fLTν , 45.0=ϕν fT ,   GPaEm 3=   4.0=mν  
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The modulus ratio 
m

fL
E

E  and the fiber volume fraction fV  were used as the main 

parameters in the analysis. A fiber content range 55.045.0 ≤≤ fV  which has practical 

significance was considered. 

To account for variability of the radial modulus fTE  and shear modulus fLTG  the four 

fiber materials with properties given in Table 2.1 were used.  

 

Table 2.1 Elastic properties for materials M1 to M4 

Property M1 M2 M3 M4 

fTE  (GPa) 20 30 20 30 

fLTG (GPa) 30 30 20 20 

 

First the perfect bonding case at the fiber/matrix interface shown in Fig 2.2a) was 

analyzed. The b
anu1  ( index b is used to denote the perfectly bonded case) dependence on 

the fiber/matrix modulus ratio for Material 1 is shown in Fig. 2.3. Obviously, the stiffness 

ratio has much larger effect on anu1  than the variation in fiber volume fraction. 
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Figure 2.3  Normalized average COD dependence  on fiber/matrix axial modulus ratio. 
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Presenting these data in log-log axes as shown in Fig.2.4 we obtain a very straight line 

with slope which very weakly depends on the fiber content. This result proves that a 

power law with respect to modulus ratio can give an adequate description of the 

relationship 
n

m

fLb
an E

E
Au ⎟⎟
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⎞
⎜⎜
⎝

⎛
=1         (2.32) 
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Figure 2.4 Normalized average COD dependence on fiber/matrix axial modulus ratio in 

logarithmic axes 

 

Similar results for Material 2 to 4 show slight dependence of n  on the ratio fLTfT GE / . 

The described dependences are fitted with a high accuracy with the following linear 

relationship 

f
fLT

fT V
G
E

n 066.00143.05148.0 −+=       (2.33) 

 

A  in (2.32) is a function of fiber content fV  and  of other elastic properties of the fiber 

normalized with respect to the matrix modulus 

 

 mfT
n
fT EEE =  mfLT

n
fLT EGG =      (2.34) 
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Figure 2.5 Predicted normalized COD versus calculated using FEM. Predictions are 

presented by solid lines. 

 

Analysis of FEM results showed that Alog is a linear function of fV . The dependence on 

normalized parameters (2.34) was presented by polynomial expansion 

 

( ) n
fLT

n
fT

n
fLT

n
fT

n
fTf GEaGaEaaEVA 32100018.0194.0log ++++−=−    (2.35) 

 

0941.00 =a        00927.01 =a        00387.02 =a  000234.03 −=a   (2.36) 

 

The predicting accuracy of  (2.32)-(2.36) is demonstrated in Fig. 2.5 and 2.6 which shows 

excellent agreement with FEM values represented by symbols 

 

As a final check of the application range we apply the obtained fitting law to glass fiber 

composite case ( GPaE f 70= , 2.0=fν ) which due to fiber isotropy is outside the 

region which was used for fitting parameter determination. In this case, see Fig. 2.7 the 

predicted normalized average COD’s are about 10% lower than the FEM values. This 

means that the fitting functions are more accurate for anisotropic fibers. However, as it 
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will be shown in following the interface debonding introduces much larger opening 

displacements and the obtained 10% underestimation for glass fiber case is acceptable. 
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Figure 2.6 Normalized average COD Predictions according to (2.32)-(2.36) (solid lines) 

and according to FEM (symbols) 
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Figure 2.7  Accuracy of predictions for glass fiber composite 

  

In most cases the interface at the fiber break is partially debonded and the debond length 

debl , see Fig.2.2b), grows with increasing load or with the number of cycles in fatigue. 

Calculations were performed only for 45.0=fV . The used carbon fiber properties are 
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GPaE fL 500=  GPaE fT 30=   GPaG fLT 20=    (2.37) 

The effect of the debond length debl  on the carbon fiber crack opening profile is shown in 

Fig.2.8. Obviously the COD significantly increases with the debond length and the 

coordinate dependence is smaller. 
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Figure 2.8 Crack opening displacement profiles at 1% applied strain for different 

normalized length of debond debl . Friction is ignored. 

 

Calculations were performed for the following four cases: 1) without contact elements 

thus allowing for material interpenetration (results in Fig 2.8); 2) with contact elements 

but with zero friction. The opening profile almost coincides with the case 1); 3) contact 

elements with friction coefficient 2.0=k (Coulombs friction); 4) contact elements with 

friction coefficient 4.0=k . Calculations were performed without account for thermal 

effects. Hence, the friction is caused by differences in Poisson’s ratios only. 
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Figure 2.9  Normalized average COD dependence on the normalized debond length 

fdeb rl / in carbon fiber/ epoxy composite for solution without contact elements and for 

solution with contact elements and three values of frictional coefficient k . 

 

The normalized average COD as a function of the debond length is presented in Fig. 2.9 

for carbon fiber composite and in Fig. 2.10 for glass fiber composite. The average 

normalized COD, anu1  is a linear function of the debond length for debond length 

fdeb rl 5.0> . Results are almost coinciding for no-contact case and for contact elements 

with 0=k . The presence of friction reduce the slope by 5-10%. The slope is rather 

insensitive to k  change in the region 4.02.0 ≤≤ k used in calculations. The slope in the 

frictional case is very close to one which leads to the following choice of fitting function 

for COD in this region 

 

D
r
l

u
f

deb
an += 11         ( 2.38) 

where D  depends on material properties. It is equal to the normalized average COD at 

fdeb rl 5.0= . D  is much larger for CF case than for GF case. 
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Figure 2.10  Normalized average COD dependence on the normalized debond length 

fdeb rl / in glass fiber/ epoxy composite. Solution without contact elements and solutions 

with contact elements and three values of frictional coefficient k . 

 

Comparing the anu1  values of the linear fit  at 0/ =fdeb rl  with the value b
anu1  for the 

bonded case, 0=debl  considered earlier we see that the ratio is almost the same for 

carbon fiber and glass fiber case ( 1.51 and 1.47 respectively). Based on this observation 

we roughly assume that this ratio is material independent and equal to 1.5 and D can be 

written as 

  b
anuD 15.1=         (2.39) 

 

Substitution in (2.38) leads to 

 

  
f

db
anan r

l
uu += 11 5.1        (2.40) 

The validity of this expression for fiber contents different than 0.45 has been proved 

using FEM. The predictions and values from FEM for friction coefficient 2.0=k are 

presented in Fig. 2.11 and they are in a very good agreement. Eq (2.40) will be used in 

the following section to predict stiffness reduction in UD composite. 
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Figure 2.11  Normalized average COD of fiber cracks with debonds. Predicted (2.40) 

(lines) and FEM with contact elements and friction coefficient 2.0=k (symbols).  

 

Detailed FEM analysis of fiber crack displacements with debonds fdeb rl 5.00 <<  was 

not performed. The following fitting expression may be obtained in this region if we 

assume linear COD dependence on the debond length  

( )
f

db
an

b
anan r

l
uuu 1111 ++=        (2.41) 

 

 

2.6. Stiffness reduction due to fiber breaks in a unidirectional layer.  
 

The fiber crack face sliding displacements as well as the normal displacements of the 

debond cracks were not investigated in this study. However, as checked by putting 

arbitrary values in the model, they mainly affect the transverse and shear properties of the 

UD composite and their effect on the composite longitudinal modulus, is negligible. 

The main focus in this paper is the combined effect of fiber breaks and the accompanied 

debonding on the longitudinal modulus of the composite. This property is affected by the 

resultant fiber crack opening displacement, COD, only. On the other hand from the 
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performed calculations using the developed model follows that COD has a negligible 

effect on other stiffness properties than the longitudinal modulus.  

Stiffness reduction predictions were performed for carbon fiber composite with fiber 

properties GPaE fL 300= , GPaE fT 30= , GPaG fLT 20= , 2.0=fLTν  and for glass fiber 

composite with  fiber properties GPaE f 70= , 2.0=fν . Matrix was the same for both 

composites with GPaEm 3= , 4.0=mν . Fiber content in the composites was 5.0=fV  

and fiber radius mrf µ4= . 

The statistical fiber cracking evolution with load was not simulated and neither the 

debond crack growth with load or number of cycles. This type of analysis would give the 

stiffness changes as a function of the load history. 

In this paper the main emphasis is on understanding of the significance of fiber breaks. 

Hence the damage state in following predictions is used as an input parameter. The 

number of cracks in all fibers of the RVE can be assumed the same. Predictions are 

presented in Fig. 2.12 as the normalized longitudinal modulus reduction versus the fiber 

break density in one fiber measured as the number of fiber breaks per 1cm. The 

representation of the damage state by crack density does not limit the accuracy because 

the cracks are considered noninteractive and hence the COD does not depend on the 

particular location of the fiber crack. Therefore the result is the same for evenly spaced 

cracks and for arbitrary distributed. The highest number of breaks (20cr/cm correspond to 

fiber fragment length 0f 0.5mm where the stress perturbations from both ends of the fiber 

fragment start to interact and the used expressions for COD’s are overestimated. The 

results obtained for three values of the normalized debond length fdeb rl /  show that the 

debond length has a great significance for the stiffness reduction. The relative modulus 

reduction in carbon fiber composites is larger due to a larger opening of the fiber crack 

which is a consequence of higher fiber and matrix modulus ratio leading also to larger 

extent of the stress transfer zone. 
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Figure 2.12.  Longitudinal modulus reduction in UD composite in a normalized form as 

a function of the number of fiber breaks in one fiber: a) CF/EP composite, b) GF/EP 

composite 

 

2.7 Conclusions for Chapter 2 
 

Stiffness reduction in unidirectional composites due to fiber breaks with a partial 

interface debonding can be analyzed by the presented model which is based on exact 

expressions relating the composite stiffness with the normalized average displacements of 

the fiber crack faces. 

Only the opening displacements were studied leaving the sliding effect to further studies. 

It was found by using arbitrary values that fiber crack face sliding does not affect the 

longitudinal modulus of the composite. The axial sliding of the debond crack faces is 

already included through the increased opening of the fiber crack. On the other hand the 

crack opening does not affect the Poisson’s ratio, transverse modulus and shear modulus 

of the composite. 

The main parameters affecting the normalized fiber crack opening have been analyzed 

using FEM and it is found that the fiber longitudinal modulus, fiber content and the 

debond length are of the highest significance. These relationships are described by simple 

functions which excellently fit the numerical results. The effect of other less important 

parameters is also included in these fitting expressions. 
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It was found that the relative longitudinal modulus reduction in carbon fiber composite is 

slightly higher than in glass fiber composite. This trend holds for all considered debond 

lengths and is related to higher longitudinal modulus/matrix modulus ratio for carbon 

fibers leading to larger crack openings and larger stress perturbation zones. 

 

 

 

Appendix 1 

  

Average stresses and strains over the domain with volume V  are defined as follows 

{ } { }∫=
V

a dV
V

σσ 1        (A1.1) 

{ } { }∫=
V

a dV
V

εε 1        (A1.2) 

Superscript a denotes the volume average.  

Boundary average stress, which has the meaning of the macroscopic stress applied to the 

external surface ES  of a domain with volume V  (in present study it is the average stress 

applied to the RVE of the UD composite, RVEVV = , )(RVEEE SS = , is defined as 

 

 ∫=
)(

1

RVEES
jkik

RVE

RVE
ij dSxn

V
σσ       (A1.3) 

 

It is easy to prove (Allen et al., 1998) that the boundary averaged stress is equal to the 

boundary averaged stress. Hence  

 

 { } { }aRVE σσ =         (A1.4) 

 

Since volume integral over volume V  can be written as a sum of integrals over 

subdomains of this volume (elements) with volume el
kV , one can write 

 



 73

 
{ } { }∑=

k

k
ak

a V σσ
       (A1.5) 

In (A1.5) kV  is the volume fraction of the k-th sub domain. 

Boundary averaged strains may be introduced as 

 

 ( )∫ +=
S

ijji
ba
uj dSnunu

V 2
11ε       (A1.6) 

 

Also the volume averaged strains are equal to boundary averaged strains (Allen et al., 

1998). Since the boundary includes also crack surface ( CE SSS += )  this equality may 

be written in the following vectorial form 
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  (A1.7) 

Here the upper index “ba” stays for “boundary average” over the external boundary. It 

describes the apparent strain due to the deformation of the outer boundaries. For RVE it 

is the applied strain. For sub-domains of the RVE (elements) its determinations is in 

general a complex problem. For elements like layers in laminates, where iso-strain 

hypothesis is valid  this strain is equal to the strain applied to the laminate.  

In (A7) ijβ is the Vakulenko-Kachanov tensor defined by 

 

    ( )dSnunu
V ijji

S
ij

C

+= ∫ 2
11β       (A1.8) 

Sc is the total surface of cracks in the domain under consideration, iu  are displacements 

of the points on the crack surface, in is outer normal to the crack surface, In domain with 

no cracks, ijβ  is zero.  

The stress-strain relationship of the k-th element (2.1) can be averaged over this element, 

leading to  

{ } [ ] { }a
kk

a
k Q εσ =       (A1.9) 
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Appendix 2 

 

The [ ]H k  -matrix is defined in the local axes of an element (fiber and matrix cylinders) 

and it defines the relationship between k-th element boundary averaged strains and the 

strains applied to the RVE.  

 

{ } [ ] { }RVEk
ba
k H εε =         (A2.1) 

 

The following consideration is for non-damaged elements. 

Since in UD composite each element has a form of a cylinder (with an axis in the L-

direction) extending in this direction over the whole length of the RVE, some conclusions 

regarding the form of the [ ]H k  -matrix can be formulated considering elementary 

loading cases. 

1.  0≠RVE
Lε , the rest of RVE strains is zero. 

Since the strain in each element in the L-direction is equal to the applied strain, the 

elements 11111 == mf HH .  

2. Applying LAM
Tε  only  (with zero RVE  longitudinal and shear strain). 

The average strain in the L-direction in the element is equal to this strain component 

applied to the RVE (it is zero). Hence 01212 == mf HH .  

3. We assume that only applied RVE shear strains may cause non-zero boundary 

averaged shear strains in the element leading to 062612616 ==== HHHH . 

 

The rest of elements in the H-matrix depend on geometrical and stiffness parameters and 

come from solution of a complex 3-D problem. Hence the form of the H-matrix for fiber 

and for matrix is a s follows 
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H-matrix elements in the fiber and in the resin are not independent. 

One relationship between them may be obtained using the request of thermodynamics 

that the RVE stiffness matrix of the undamaged UD composite, see (2.13) has to be 

symmetric.  For a UD composite the following matrix has to be symmetric 
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Performing matrix multiplication leads to expression 
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The symmetry  means that 
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According to Appendix 1 the strains applied to RVE of an undamaged composite are 

equal to the volume averaged strains in the RVE which can by expressed by rule of 

mixture through volume average strains in sub-domains (fiber and matrix). Since the 

volume averaged strain of the sub-domain equals to its boundary averaged strain we 

obtain 
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Expressing boundary averaged strains in (A2.6) through RVE strain using (2.6) leads to 
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The longitudinal strain relationship in (A2.7) is satisfied automatically. The transverse 

strain relationship (second equation in (A2.7)) leads to  
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Comparing coefficients in terms related with 0
,RVELε   and 0

,RVETε  respectively we obtain to 

relationships 
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From (A2.9) follows relationships between H-matrix elements in the fiber and matrix 
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Substituting (A2.10) in (A2.5) we obtain 
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Considering the shear strain relationship in (A2.7) we obtain 
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Estimations may be obtained using Concentric Cylinder Assembly model by Hashin et 

al., (1964), Hashin, (1983) or numerical solutions 
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