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Abstract: The aim of this work is to develop and efficient tool for the computer simulation of 
progressive damage in the fiber reinforced composite (FRC) materials and thus to provide the 
micromechanics-based theoretical framework for a deeper insight into fatigue phenomena in them. 
The unified semi-analytical approach has been developed able to simulate the local stress fields and 
predict the probable fatigue damage development scenarios at the micro and meso structure scales. 
The theoretical basis is the Multipole Expansion Method (MEM) proven to be highly efficient way of 
studying the behavior of large-sized models of composite and suspension mechanics. In this work, it is 
coupled with the representative unit cell (RUC) model of FRC providing a proper account for the micro 
structure statistics. A combination of the realistic structure model with the accurate and numerically 
efficient method of analysis provides probably the most reliable prediction of the composite's behavior. 

The developed solving technique combines the superposition principle, the theory of complex 
potentials, Fourier series expansion and certain new results of the theory of special functions. By 
using the properly chosen potentials and newly derived re-expansion formulas for them, the model 
boundary-value problem stated on the multiple-connected domain has been reduced to an ordinary, 
well-posed set of linear algebraic equations which provides high numerical efficiency of the method. 
By analytical averaging the strain and stress fields the exact formulae for the effective stiffness tensor 
have been derived. An accurate solution has been obtained for the micro stress field in a meso cell 
model of fibrous composite. The model includes several hundred inclusions sufficient to account for 
the micro structure statistics of composite. The presented numerical examples demonstrate an 
accuracy and high numerical efficiency of the method which makes it to be a promising tool for 
studying progressive damage in FRCs. A brief information is provided on the developed Multipole 
Expansion Method based applied software.  
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 1. The meso cell model of fiber reinforced composite (FRC) 
 
 1.1. Model geometry 
 
 The meso cell model of the FRC bulk, shown in Fig.1.1, represents the next step in 
development of the "finite array of inclusions" model studied by Kushch et al. (2005) and 
Buryachenko and Kushch (2006). Namely, we consider a quasi-random model structure, 
respectively, a unit cell of which contains a certain number of aligned and circular in cross-
section fibers. Within a cell, the fibers are placed arbitrarily but without overlapping. The fibers 
with edges shown in Fig. 1.1 by dashed line do not belong to the cell while occupying a certain 
area within it. Geometry of the cell is given by its length and height, the coordinates of the 
centers of fibers and their radii. The composite bulk is obtained by translating the cell in two 
orthogonal directions. Number of the fibers with centers inside the cell is taken large sufficiently 
to approach micro geometry of an actual disordered composite. Diameter and the elastic moduli 
are defined individually for each separate fiber. It provides applicability of this model for studying 
the multi-component systems and the effect of fiber diameter scattering, which are quite 
considerable in the commercial FRCs (Babuška et al., 1999).   

 
Fig. 1.1. Geometry model of the composite bulk 

 
 The structure model (Fig. 1.1) of statistically homogeneous quasi-random composite is 
generated by the molecular dynamics algorithm of growing particles (Sangani and Yao, 1988) 
with subsequent equilibrization to guarantee reproducible thermodynamic properties of the 
model (Torquato, 2002). In Fig. 1.2, the empirical radial distribution function for the model FRC 
with N=100 and volume content of fibers c=0.65 is shown. The open circles represent data for a 
single structure realization, solid circles are obtained by averaging over 10 runs. The solid and 
dash-dotted lines show the analogous data obtained by Truskett et al. (1998) and Buryachenko 
et al. (2003), respectively. As seen from the plot, our data practically coincide with the results by 
Truskett et al. (1998) which validates the developed by us algorithms and software. 
 The following modification of the above model is also of practical interest. In Fig. 1.3a, a 
typical structure of cross-ply FRC laminate is shown. Babuška et al. (1999) have reported 
considerable local decrease of the fiber volume content and stress re-distribution in a vicinity of 
the inter-ply boundary. The adequate model of composite ply is shown in Fig. 1.4: it differs from 
the "bulk model" in that no fiber intersections with the flat edges of the ply are allowed. This 
model makes possible studying the edge effects caused by the low fiber volume content nearby 
the ply boundary and by interacting with the neighboring plies provided the boundary conditions 
at the flat edges were properly stated. The developed method is applied equally to both these 
models. Noteworthy, the model we consider involves the additional structure parameter, namely 
ply thickness, so it can be thought as a meso level model. Also, it seems reasonable to regard 
the typical damage observed in Fig. 1.3b as the meso level event rather than micro- or 
macroscopic ones associated with a single fiber and entire composite part, respectively. Due to 
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these reasons, we will call our model as a "meso cell"; for more discussion on the subject, see 
Mishnaevsky (2007). 
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Fig. 1.2. Radial distribution function of the quasi-random composite cell model:  
100 fibers per cell, solid line is obtained by averaging over 10 realizations  

     

 
Fig. 1.3. Cross-ply laminate (a) subjected to uniaxial loading and  

(b) resulting damage (Joffe, 1099).  
 

 
Fig. 1.4. Structure model of the composite ply 
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 1.2. Model boundary value problem (BVP) 
 
 Within the 2D framework, the (a) plane strain, (b) plane stress and (c) anti-plane shear 
problems for FRC model are studied. Both the matrix and fiber materials are isotropic and 
linearly elastic. At the matrix-fiber interfaces, the perfect bonding conditions (continuity of 
displacements and normal tractions) are prescribed: 
 

  
The stress field in the composite bulk is assumed to be macroscopically homogeneous, which 
means constancy of the volume-averaged, or macroscopic, strain ijij εε =∗  and stress 

 
ijij

* σσ =
 
tensors, which are considered in a given context as the governing parameters. 

The far field load defined by the macroscopic strain tensor is typical in the homogenization 
problem where the macroscopic, or effective, moduli are to be determined. On the contrary, 
using the macroscopic stress tensor as the load governing parameter is preferable in the local 
stress concentration study. Under macroscopic stress homogeneity condition periodicity of 
structure results in periodicity of relevant physical fields. The stress periodicity 

   )()i()( zbzaz ijijij σσσ =+=+  

can be alternatively regarded as the cell boundary condition providing continuity of the 
displacement and stress fields between the adjacent cells. The relevant decomposition of 
displacement field involves the linear part being the far field and the periodic fluctuation caused 
by the inhomogeneities..

 
 

 
 1.3. Analytical method 
 
 An accurate analytical method has been developed to solve for stress in the meso cell 
comprising  
 - the Muskhelishvili’s (1953) complex variables technique;  
 - the superposition principle;  
 - the Golovchan et al. (1993) singular periodic potentials;  
 - the Fourier and Laurent series and  
 - the newly derived re-expansion formulae.  
The solution of the model BVP is built in a computationally cost-efficient way, in the class of 
periodic functions rather than doubly-periodic ones in conventional multipole expansion method 
(e.g., Movchan et al, 1997). By complete fulfilling all the boundary conditions, the model BVP is 
reduced to the well-posed infinite set of linear algebraic equations with the matrix coefficients 
given by rational expressions and involving (unlike FEM or BEM) no integration. It provides high 
numerical efficiency of the method. It is of primary importance in the progressive damage we 
aim to study because, in order to simulate the complete path of successive damage, one must 
solve the model BVP repeatedly several tens or even hundreds times. The developed method is 
sufficiently flexible to consider the both "composite bulk" and "composite ply" models with an 
adequate account for the edge effects. The stress field obtained from the above solution is 
integrated analytically to get the closed form exact expressions of the effective, stiffness tensor.

   The analytical formulas of the method are rather involved and too lengthy to be 
reproduced here. For the details of derivation in the isotropic case, see the papers by Kushch et 
al. (2008a) and Sevostianov and Kushch (2009). Generalization of the method on the case of 
fibrous composite with anisotropic constituents is given by Kushch et al. (2008b). A detailed full 
account of the method is given in the UpWind ISM Annual Report-2007. 
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2. Numerical testing 
 
2.1. Numerical realization and efficiency 
 
    The derived series solution is asymptotically exact. Its numerical algorithm involves the 

truncation procedure (retaining a finite number Neqn of equations and unknowns) and provides 
any desirable accuracy of solution by the appropriate choice of Neqn. High efficiency of 
numerical scheme stems from the fact that the method deals with simple rational expressions 
and ordinary rapidly convergent sums only and - unlike FEM or BEM - involves no integration. 
The most computational time is spent by the linear solver: the generalized minimum residuals 
(GMRES) algorithm by Saad and Schultz (1986) has been chosen as the best compatible with 
the multipole expansion technique. Convergence rate (and hence numerical efficiency) of 
GMRES depends on the rational choice of preconditioner matrix and initial guess. Following Fu 
et al. (1998), the block-Jacobi preconditioner is chosen which has a clear physical meaning for 
the many-inclusion problem (i.e., solution for non-interacting fibers). 

     
Table 2.1. Linear Solver Elapsed Time, s  
 

Neqn DLAX DLSARG GMRES 
1600 9.5 3.0 0.43 
2400 31.9 8.6 0.94 
3600 79.1 40.5 1.8 
4800 lost accuracy 100.1 4.2 

 
The open source Fortran code of GMRES routine by Fraysse et al. (1998), with minor 

modifications, is utilized. Its performance is seen from Table 2.1, where the run time vs number 
of equations Neqn is given for three double precision linear solvers. They are: DLAX, standard 
direct solver (SSL2 library, Lahey Fortran 5.7); DLSARG, standard direct solver (IMSL library, 
Compaq Visual Fortran 6.5) and GMRES, the problem-adjusted iterative solver. All the 
subsequent numerical data have been obtained using the Pentium IV 2.4 GHz single processor 
PC. It is seen from the Table that using the standard direct solvers have no perspective. Yet 
another argument in favor of iterative solver for the progressive damage simulation consists in 
that the solution obtained on the previous step is an initial guess for the next step: doing so 
results in the rapid convergence of iterations. The further improvement of numerical efficiency 
can be achieved by taking more elaborated preconditioner and by allowing the algorithm to 
automatically adjust the number of terms in Fourier series in order to reach the desirable level 
of accuracy. 

 
2.2. Convergence 
 
    Three main parameters governing convergence and accuracy of results in the statistical 

analysis are 
    - number Nharm of harmonics retained in the series expansions; 
    - number Nfib of fibers with the centers lying inside the unit cell; 
    - number Nconf of random structure realizations taken for averaging. 
    All these numbers should be taken sufficiently large to provide the reliable numerical 

results. On the other hand, computational effort of our study scales as (Neqn)2 Nconf, where 
number of equations Neqn = 4 Nfib Nharm and, to avoid exceedingly large total computational time, 
the reasonable values of Nharm, Nfib and Nconf are to be taken. Their motivated choice is based on 
the solution convergence rate study. 

    First, we evaluate number of harmonics Nharm we need to keep in the numerical solution 
in order to get the convergent solution. The convergence rate is seen from Tables 2.2 and 2.3, 
where the peak interface stress σr max = max σr is given as a function of δmin and Nharm.  
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Table 2.2. σr max at interface: two inclusions along the loading direction 
        

Nharm  δmin 
1 0.5 0.2 0.05 0 .02 

10 2.00 2.75 4.32 26.3 
20 2.00 2.76 4.25 5.55 
30 2.00 2.76 4.25 5.19 
40 2.00 2.76 4.25 5.18 

 
Table 2.3. σr max at interface: a square array of inclusions 
          

 δmin 
Nharm 0.5 (c = 0.349) 0.2 (c = 0.545) 0.05 (c = 0.712) 0.02 (c = 0.755) 
10 1.53 1.74 2.88 2.26 
20 1.53 1.72 2.29 2.66 
30 1.53 1.72 2.28 2.69 
40 1.53 1.72 2.28 2.70 

 
The data shown in Table 2.4 were obtained for the random structure realization (30 inclusions 
per cell) with δmin = 0.02; the fiber volume content c is taken the same as in Table 2.3.  

 
Table 2.4 σr max at interface of the arbitrarily chosen fiber: quasi-random array of inclusions 
 

Nharm c = 0.349 c = 0.545 c = 0.712 c = 0.755 
10 8.00 5.36 5.38 6.47 
20 3.90 3.50 2.59 2.73 
30 3.88 3.50 2.57 2.72 
40 3.88 3.50 2.57 2.72 

 
Here, no smooth σr max(c) dependence is expected because, for each c, only one random 
structure realization was taken. However, the max stress decreasing tendency is quite clear: the 
higher is the fiber volume content, the less room left for isolated clusters of a few fibers where 
the highest interface stress concentration is most probable. 
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Fig. 2.5. Interface stress convergence with Nharm increased 
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    In Fig. 2.5, the σr stress variation along the interface of the arbitrarily chosen fiber in the 
model with 30 fibers per cell, c = 0.349 and δmin = 0.02. The stress convergence is uniform and 
already Nharm = 20 gives the practically convergent solution with a relative error in stress below 
1%. The smaller δmin is, the stiffer the model BVP is and the higher local stress concentration is 
expected. By taking a fixed allowable distance δmin, we pre-determine the maximum allowable 
stress and hence this parameter should be taken as small as possible. An idea of how σr max is 
affected by δmin can be drawn from the stress asymptotics for nearly touching fibers.    
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 Fig. 2.6. Peak interface stress σr max as a function of normalized inter-fiber distance 
 
The developed analytical method is also advantageous in that it, BEM and FEM unlike, 

handles equally well the problems with separated and touching inclusions. It is seen from Fig 
2.6 that the interface stress remains finite when the fibers are drawn together (δmin → 0): the 
stress singularity is expected only in the case of rigid (non-deformable) inclusions. The lines 
represent our solution, the analogous data obtained by FEM are shown in the plot by the solid 
circles for two fibers and by the open circles for a square array of fibers. The compared data 
practically coincide which validates both the developed theory and numerical code. For δmin = 
0.05 adopted by Chen and Papathanasiou (2004) the probable σr max underestimation is almost 
two times. The value δmin = 0.01 seems to be a reasonable compromise between the accuracy 
and computational effort. 

    The next issue is a number of fibers N_{fiber} inside the unit cell. The data in Table 2.5 
are the mean stress inside the cell, averaged over 50 configurations. Taking account of that 
loading is the uniaxial macroscopic strain Ekl = 1, these numbers are also the effective elastic 
moduli of a fibrous composite C*ijkl . 

 
Table 2.5. Effective stiffness of a fibrous composite: convergence and isotropy checking 
 

 σ11/C1111 σ22/C2222 σ12/C1212 
N=20, E11=1 2.685 ± 0.016 2.242 ± 0.012 0.009 ± 0.012 
N =20, E22=1 2.242 ± 0.011 2.659 ± 0.016 0.009 ± 0.012 
N =50, E11=1 2.683 ± 0.011 2.270 ± 0.008 -0.006 ± 0.008 
N =50, E22=1 2.271 ± 0.008 2.671 ± 0.010 -0.005 ± 0.009 

 
It is seen from the Table that the values obtained for Nfib = 20 and Nfib = 50 are rather close 
which clearly indicates convergence of solution with respect to Nfib. These data are also useful 
in verifying isotropy of the random structure model. Ideally, one must get for macroscopically 
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isotropic composite material. As calculations show, already for Nfib = 20 an anisotropy degree is 
below 1% and shows a tendency to decrease with the Nfib growing up. 

    Fig. 2.7 shows how much a number of realizations Nconf affects the results of statistical 
averaging. Here, the normalized effective Young modulus Eeff/E0 averaged over a number of 
random structure realizations is shown. The open circles correspond to Nfib = 20 whereas the 
solid circles correspond to Nfib = 50. Based on these observations, the conclusion can be drawn 
that Nconf = 50 provides practically convergent solution.  
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Fig. 2.7. Convergence of effective transverse Young modulus  
of FRC with a number of realizations Nconf increased 

 
Noteworthy, these data must be considered only as the indicative ones as they depend on 

the volume content of fibers, fiber-to-matrix moduli ratio, microstructure type, etc. In each 
specific case, a similar testing must be done and the appropriate numbers ensuring the 
accurate and statistically meaningful results should be determined. 

 
     
3. Multipole Expansion Method based software 
 
    Based on the above mentioned algorithms, the Windows XP/2000 software product 

COMPOSITE MESOCELL has been developed. The numerical routines are written in Fortran 
95, for visualization of the input and output data, the OpenGL graphical library has been utilized. 
The total length of source code is about 7000 Fortran lines, or 325 Kbytes. The program is 
interactive and provides a set of menus and dialogs for the problem specification, input the 
problem data, monitoring the flow of solution and post-processing the output data. Also, it 
contains several additional options providing control of the run flow and visualization process. 
The software provides the extended possibilities of adjusting the existing problem formulation, 
checking and correcting the structure model, allows to choose between the problems to be 
solved, to evaluate the empirical RDF of model composite and to perform the detailed study the 
stress field in the matrix, fibers and at the interfaces. 

    The problem dialog shown in Fig. 3.1, defines the problem and loading type and the value 
of far load, the volume content of fibers, the elastic properties of matrix and fiber materials, etc. 
Also, there shown a typical representative unit cell of composite the model problem is stating 
for. For generation of the quasi-random model structure, the described above Molecular 
Dynamics based packing algorithm is utilized. The main computational algorithm of the program 
implements the developed version of the Multipole Expansion solving technique and involves 
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(a) evaluation of the lattice sums entering the matrix coefficients of the resolving linear set of 
equations, (b) its solution using the iterative GMRES linear solver (c) evaluation of the local 
stress fields and the macroscopic, or effective, elastic moduli of FRC. An opportunity is provided 
of one-time solution (prefect interface option) or step-by-step progressive damage simulation 
regime, where the problem is solved iteratively, with the removing on each step of the fibers 
based on that or another debonding criterion. 

 
 

 
 

Fig. 3.1. Representative unit cell model and problem dialog 
 

    

 
 

 Fig. 3.2. Output DataViewer: interface stress analysis 
 
Visual interactive post-processing is shown in Fig. 3.2, where the Output DataVeiwer is 

seen as well as the plots of stress variation along the matrix-fiber interface. The colored fibers in 
the cell model illustrate distribution of the max interface stress: it is easily seen that the heavily 
loaded fibers, marked by light yellow color, form the chains. The results of numerical study 
performed with aid of the COMPOSITE MESOCELL software have been reported by Kushch et 
al. (2008a) and Kushch et al. (2008b). 
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4. Conclusions 
 
    An accurate analytical method has been developed to solve for stress in an infinite quasi-

random array of circular inclusions embedded in the matrix, the last being a "meso cell" model 
of disordered fibrous composite. Up to several hundred of interacting fibers can be considered 
in the model which is sufficient to account for the micro structure statistics of a real composite. 
The method combines technique of periodic complex potentials with the Fourier series 
expansion and re-expansion formulae and can be thought as a version of the multipole 
expansion method. The developed theory and algorithms reduce the primary boundary-value 
problem of the elasticity theory for a multiple-connected domain to an ordinary well-posed set of 
linear algebraic equations. Together with the properly chosen iterative solver, it provides  high 
numerical efficiency of the method, which makes it potentially efficient tool for studying 
progressive damage in FRCs. 
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