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Abstract: The continuum model of interface damage onset and accumulation in FRC has been 
suggested based on the established correlation between the fiber arrangement and the peak interface 
stress statistics. The method combines the multipole expansion technique with the representative unit 
cell model of random structure FRC able to simulate equally well the uniform and clustered random 
fiber arrangements. By averaging over a number of numerical tests, the empirical probability functions 
have been obtained for the nearest neighbor distance and the peak interface stress. It is shown that 
the considered statistical parameters are rather sensitive to the fiber arrangement, in particular, cluster 
formation. An explicit correspondence between them has been established and an analytical formula 
linking the micro structure and peak stress statistics in FRC has been suggested. Application of the 
statistics of extremes to the local stress concentration study has been discussed. It is shown that the 
peak interface stress distribution in FRC with uniform micro structure follows Fréchet-type asymptotic 
distribution rule. The presented numerical data demonstrate potential of the developed approach: 
practical importance of the established relationships (as well as other analogous dependencies which 
can be obtained in this way) consists in the following.  

The ultimate goal of our simulation consists in development of the continuum theory of FRC 
strength. To accomplish this task, we need to link the micro structure parameters to the peak local 
stress statistics and micro damage initiation and accumulation rate. The statistical parameters of an 
actual FRC micro structure and the constants entering the local stress distribution functions we found 
from the numerical experiments would be the input variables of this theory.  
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 1. Introduction 
 
 Theoretical prediction of fiber reinforced composite (FRC) strength is challenging 
because the micro damage onset is governed by the peak local stress rather than by its mean 
value. Except the very dilute case, interaction between the fibers results in that stress 
concentration on them deviates from that observed for a single fiber embedded in an 
unbounded matrix and, due to randomness of the structure of composite, is a random function 
of spatial coordinates. The peak stress location and level is rather sensitive to the arrangement 
of fibers so their reliable prediction requires an adequate account for a micro structure statistics 
of actual FRC and interactions between the fibers. The problem becomes much more tough in 
the case of composite with statistically non-uniform fiber distribution.  
 The papers by Pyrz (1994a,b) and Pyrz and Bochenek (1998) address the problems of 
quantitative description of arrangements and correlations in unidirectional FRCs. It has been 
indicated there that both topological and second-order statistics are related to the local stress 
variability under transverse loading conditions. However, their stress analysis should be 
regarded as qualitative because the iterative model they applied assumes constant stress 
inside the fiber. It allows mean stress evaluation in a weakly heterogeneous material; however, 
peak local stress even in two-fiber problem cannot be captured this way. As shown by Ganguly 
and Poole (2004), the iterative model can only be applied to dilute composites where the 
minimum inter-fiber distance exceeds the fiber radius three and more times.  
 A promising way to account for the fiber arrangement statistics and interactions between 
them is known in the mechanics of composites as the "representative unit cell" approach. It is 
based on modeling the structure of an actual heterogeneous solid by a periodic medium whose 
representative unit cell contains a number of inhomogeneities. This approach is advantageous 
in that the quasi-random micro structure of such a material, with a prescribed statistical 
structure parameters, can be specified explicitly. Moreover, due to deterministic nature of this 
model, it is possible to formulate and solve the periodic model problem accurately and thereby 
to account for the interactions among the inclusions in a rigorous manner.  
 In the framework of UPWIND.TTC Project, an efficient multipole expansion technique-
based method and numerical code have been developed (Kushch et al., 2008) for evaluating 
the micro stress field in a fibrous composite. The method combines the superposition principle, 
theory of complex potentials and Fourier series expansion in order to reduce the meso cell 
model problem to an ordinary, well posed set of linear algebraic equations. By averaging over a 
number of random structure realizations, the statistically meaningful results have been obtained 
for both the local stress and effective elastic moduli of disordered fibrous composite. In the 
present study, the method by Kushch et al. (2008) is applied to develop the micro damage 
model of FRC based on the relationship between the fiber arrangement type and the local peak 
interface stress statistics in FRC. To this end,  

• the representative unit cell model of fibrous composite able to simulate both the uniform 
and clustered random fiber arrangements is used;  

• a series of computational experiments has been carried out and the empirical probability 
functions have been obtained for the nearest neighbor distance and the peak interface 
stress. It is shown that the considered statistical parameters are rather sensitive to the 
fiber arrangement, in particular, cluster formation; 

• an explicit correspondence between them has been established and the relevant 
analytical formulas have been written. It is found that the peak interface stress distribution 
in FRC with uniform random arrangement of fibers follows Fréchet rule;  

• based on the above findings, the micro damage model of FRC has been suggested. 
  

 2. Representative meso cell model of fiber reinforced composite (FRC) 
 
 2.1. Model geometry 
 
 Reliable prediction of FRC micro damage onset and accumulation requires (a) using a 
geometry model statistically close to the micro structure of an actual FRC and (b) an adequate 
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account for interactions between the fibers. It, in turn, necessitates statistical description of both 
the geometry and local stress field because in most FRCs, both micro structure and stress field 
are the random functions of spatial coordinates. On the other hand, the local damage level and 
strength limit of FRC is governed by the peak local stress, location of which is quite sensitive to 
the fiber arrangement. The probability theory formalism seems to be an adequate and probably 
the only consistent way for linking the statistical parameters of micro structure and peak local 
stress distribution. 
 To meet above requirements, we use the many-fiber meso cell model of the FRC bulk, 
shown in Fig. 2.1. Specifically, we consider a meso cell model of FRC (Kushch et al, 2008) 
containing a number of aligned and circular in cross-section fibers. The whole composite bulk is 
obtained by translating the cell in two orthogonal directions. Number N of the fibers with centers 
inside the cell is taken large sufficiently to approach micro structure of an actual disordered 
composite.  

(b)(a)

cluster area

 
Fig. 2.1. Meso cell model of the FRC bulk with (a) uniform and (b) clustered micro structure 

 
 The model provides simulation of composites with non-uniform distribution of fibers as 
well. Specifically, we consider the cluster of fibers of circular shape shown in Fig. 2.1b: its size 
is defined by the radius or, alternatively, by the volume content of clusters. Due to presence in 
this model of an additional structure parameter, it can be regarded as a meso level model; for 
more discussion on the subject, see Mishnaevsky (2007).  

  
 2.2. Model boundary value problem (BVP) and analytical method 
 
 Within the 2D framework, the plane strain, plane stress and anti-plane shear problems for 
FRC model are studied. Both the matrix and fiber materials are isotropic and linearly elastic. At 
the matrix-fiber interfaces, the perfect bonding conditions (continuity of displacements and 
normal tractions) are prescribed. The stress field in the composite bulk is assumed to be 
macroscopically homogeneous, which means constancy of the volume-averaged, or 
macroscopic, strain  and stress tensors, the last one considered as the governing parameter. 
Under macroscopic stress homogeneity condition, periodicity of structure results in periodicity of 
relevant physical fields. The stress periodicity is regarded as the cell boundary condition 
providing continuity of the displacement and stress fields between the adjacent cells. 
Decomposition of displacement field involves the linear part being the far field and the periodic 
fluctuation caused by the inhomogeneities.

 
 

 An accurate analytical method developed by Kushch et al (2008) to solve for stress in the 
meso cell comprises the Muskhelishvili (1953) complex variables technique, the superposition 
principle, the Golovchan et al. (1993) singular periodic potentials, the Fourier and Laurent series 
and the newly derived re-expansion formulae. The solution of the model BVP is built in a 
computationally cost-efficient way. Fulfilling all the boundary conditions reduces the model 
problem to the well-posed infinite set of linear algebraic equations with the matrix coefficients 
given by rational expressions and involving (unlike FEM or BEM) no integration. It provides high 
numerical efficiency of the method. A detailed account of the method is given in the UpWind 
ISM Annual Report-2007. 
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 2.3. Numerical study: debonding path model 
 
 Now, we simulate progressive damage in FRC using the meso cell model assuming the 
matrix-fiber interface to be the "weakest link". The constant amplitude cyclic load applied to the 
composite part results in the continuous dropping down the interface strength. The debonding 
occurs when the peak interface stress rrm σσ

ϕ
max=  reaches the strength limit on the most 

heavily loaded fiber. An instantaneous and complete fiber debonding is assumed: the debonded 
fiber is replaced with a pore and the modified model BVP is solved again, etc. In Fig. 2.2, the 
typical debonding fiber paths in the regular structure FRCs are shown obtained by the step-by-
step progressive damage algorithm. In the perfectly bonded composite of regular structure, the 
stress field is identical for each fiber, so we artificially introduce the local defect (a single 
debonded fiber). It causes the stress re-distribution between the adjacent fibers and the next 
and all subsequent debonding fibers are determined uniquely. The debonded fibers form a 
chain transverse to the loading direction: for a square array (Fig. 2.2a), this chain is a straight 
line row whereas in the hexagonal structure a zigzag-like chain, with more debonded fibers 
involved, is developing.   

 

 
 (a)     (b) 

 
Fig. 2.2. Debonding path in the regular structure FRC: (a) - square, (b) - hexagonal packing 

 
 A similar debonding pattern is observed in the random structure FRC. In Fig. 2.3a the 
typical simulation result is given whereas Fig. 2.3b shows the experimentally observed 
(Gamstedt and Andersen, 2001) crack path. The analogous experimental data have been 
obtained by other authors (e.g.,Tsai, 1988).  For more details, see Kushch et al (2008). 

 

 
            (a)     (b) 

 
Fig. 2.3. Debonding path in the random structure FRC: (a) - simulation,  

(b) - experiment by Gamstedt and Andersen (2001) 
 

 As seen, our model predicts correctly the damage pattern. In order to get a quantitative 
estimate of damage in terms of applied loads, number of cycles, stiffness reduction, etc., an 
additional effort in development of the model is required including interface and matrix cracking, 
delamination and other observable fatigue damage events. Another issue is randomness of 
structure which necessitates statistical post-processing of this kind simulation. 
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 3. Peak interface stress in FRC 
 
 3.1. Peak stress statistics in the random structure FRC 

 
    Now, we proceed to statistical analysis of local stress field in FRC. Specifically, we study 

an effect caused by fiber arrangement on the peak interface stress σm. Assuming this stress 
responsible for local damage onset, one can think of the "interface strength affected by micro 
structure". To obtain the test-invariant statistical distributions, σm were averaged over 50 runs at 
a given fiber volume content c. The empirical probability function F(σ) obtained by computer 
simulations for c from 0.1 to 0.5 is shown in Fig. 3. 
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Fig. 3.1. Empiric probability function of the peak interface stress σm: an effect of fiber volume content 
 
    Numerical study shows that there always (regardless of c) exists a relatively low fraction 

of fibers with high interface stress. The maximum stress is localized between the closely placed 
fiber pairs and exceeds greatly the mean stress value. In terms of interface strength it means 
that debonding will occur in these "hot spots" much earlier than in the other sites. This 
observation correlates well with - and can be quite plausible explanation of - the experimentally 
observed (Brøndsted et al., 1997; Talreja, 2000; Van Paepegem and Degrieck, 2002; among 
others) rapid FRC stiffness degradation due to matrix-fiber debonding at the initial stage of 
cyclic loading.  

 
 3.2. Peak interface stress and statistics of extremes 

 
Then, an intriguing question arises: does so close correlation between the peak stress 

statistics obtained from numerical tests and the known statistical distributions is simply a matter 
of luck? - or, possibly, this is manifestation of a certain intrinsic rule. To answer this question, 
we refer to the statistical theory of extreme values (called briefly as "statistics of extremes") 
being modern and rather promising branch of the probability theory (see, e.g., Beirlant et al., 
2004). One of the principal results of this theory is "Three Types Theorem" (Gnedenko, 1943). It 
asserts that if a distribution function does not put all its mass at a single point, it must be one of 
three types: 

 

 Gumbel-type: ( )[ ]}/expexp{]Pr[ σμ−−−=≤ xxX , all x;     (3.1) 
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This theorem gives a rigorous theoretical substantiation to the known already empirically found 
statistical distributions. What is important, it also hints what kind of distribution is expected in 
each specific case. 
 It is quite clear that our problem can be thought in context of the statistics of extremes. 
With account for that the far field load is uniaxial tension, the conservative bound for σm is σm > 
0. It makes Fréchet distribution (3.2) a plausible analytical form of the stress cumulative 
probability function. The corresponding best fit curves are shown in Fig. 3.2 by the dashed lines. 
Indeed, Fréchet fit practically coincides with the results of computer simulation. At the same 
time, an attempt to use Gumbel distribution (3.1) as a fitting function (dash-dotted curve) cannot 
be considered as successful. It is seen from the plot that discrepancy is quite significant and its 
maximum is observed for high stress, responsible for strength and, therefore, the most 
interesting for us area. As to "short-tailed" Weibull-type distribution (3.3), it fails completely to 
approximate the data obtained from numerical experiment.  
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Fig. 3.2. Fréchet, Weibull and Gumbel distributions as the fitting functions 

 
 The conclusion is made that with a high degree of probability, the peak interface stress 
distribution in FRC with uniform random arrangement of fibers follows Fréchet rule. Using the 
simulation data, the Fréchet distribution parameters have been found as the functions of fiber 
volume content c:    

   ( )[ ]{ })(
13

2)(/)(exp)( cp
s cpcpF −−= σσ .     (3.4) 

 
 4. Micro structure - peak stress correlation 
 
 4.1. Micro structure statistics: nearest neighbor distance 
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 Stress field in and around a given fiber is greatly amplified by the surrounding fibers, and 
the peak stress location and magnitude are sensitive to the fiber arrangement type. Reliable 
prediction of σm distribution requires an adequate account for the micro structure statistics of 
actual FRC. The fiber arrangement can be characterized by several parameters, including 
coordination number, particle cage, inter-particle spacing, second-order intensity (Ripley's) 
function, radial distribution function, nearest neighbor distribution function, two-point cluster 
function, etc. (Pyrz, 1994b; Babuška et al., 1999; Torquato, 2002; Buryachenko et al, 2003; 
among others). At the same time, a very little is known about relationship between the statistics 
of structure and local fields. Probably, the most definite (qualitative, however) conclusion made 
there consists in that σm amplification and its variability is strongly affected by the nearest 
neighbor distance dm and nearest neighbor orientations of adjacent fibres and therefore the 
stress amplification is more pronounced for the clustered structure as compared with the 
statistically uniform one. An important and challenging question arises regarding the am - dm  
correlation in a FRC with random micro structure. 
  To answer this question, we use the nearest neighbor statistics for packing of hard disks 
(Torquato, 1995). There, for the exclusion probability function E(r) equal to the probability that a 
circular region of radius r encompassing the reference fiber is free of other fiber centers, the 
following analytical representation was found: 

   ( ) ( )[ ]{ }1)(81)(4exp),( 1
2

0 −+−−= xcaxcaccxE     (4.1) 
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Fig. 4.1. Exclusion probability function: numerical simulation and approximation 
 

 Comparison of the results calculated according to (4.1) with our numerical results on the 
nearest neighbor statistics is illustrated in Fig. 4.1. There, the symbols represent the empirical 
exclusion probability function obtained by averaging over 50 realizations of random structure for 
a given fiber volume content c. The results of computer simulation agree closely with the theory 
which validates the algorithm and computer code of cell geometry generation. On the other 
side, it proves (4.1) to be an analytical description of statistically uniform random micro structure 
FRC. 

 
4.2. Stress concentration vs nearest neighbor distance 

 
 Both σm and dm are the random numbers: no direct functional dependence is expected 
between them. At the same time, such a relationship can be easily found between the  
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Fig. 4.2. Peak interface stress vs inter-fiber distance: effect of fiber volume content 
 

arguments of the relevant probability functions, F(σ) and E(r). Namely, we equate the probability 
of finding the neighbor fiber at the distance larger than dm to the probability of that the peak 
interface stress σm does not exceed a certain value σ. Combining the formulas (3.4) and (4.1) 
gives an explicit formula  

  ( ) ( )[ ]{ } )(/1
1

2
031

21)(81)(4)()(),( cp
m xcaxcaccpcpcx −

−+−+=σ   (4.2) 

The empirical dependencies σ(r) obtained by matching the numerical data in Fig. 3.1 and Fig. 
4.1 are shown in Fig. 4.2 by the discrete symbols; the dash-dotted lines represent the eqn (4.2).  
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Fig. 4.3. Peak interface stress vs nearest neighbor distance and orientation 
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As seen from the plot, agreement between the numerical data and their analytical 
representation is close. The observed in Fig. 4.2 tendency of decreasing the peak stress with c 
growing up is anticipatory: the higher is the fiber volume content, the less room left for the 
isolated clusters of a few fibers where the high interface stress concentration is most probable. 

The formula (4.2) deserves a certain criticism because dm is the leading, but in no way the 
only factor affecting σm. Another important structure parameter is the nearest neighbor 
orientation (e.g., Pyrz and Bochenek, 1998) characterized by the angle ϕm between the line 
connecting the centers of nearest fibers and loading direction. Correlation between σm and ϕm is 
seen from Fig. 4.3, where the raw data of computer simulation for c = 0.4 are shown. An 
angular dependence of peak stress is clearly seen: as expected, the highest σm is observed in 
the fiber pairs with ϕm close to ± π/2. For comparison, the corresponding curve σ(r) taken from 
Fig. 4.2 is shown in Fig. 4.3 by the open circles. The conclusion has been made that equation 
(4.2) gives a reasonable σm approximation for ϕm close to ± π/2 where the highest stress and 
hence local damage is expected. 

 
 4.3. Effect of clustering 

 
    Now, we consider local stress fields in FRC containing the fiber clusters of circular shape 

and estimate an effect of the cluster volume fraction ccl. To be specific, we put volume content 
of fibers in the cell and cluster c = 0.3 and cin = 0.5, respectively: c= cin ccl + cout (1- ccl), where 
cout is the fiber volume content outside the cluster: for the clusters with ccl = 0.3 and ccl = 0.5, we 
get cout = 0.21 and cout = 0.10, respectively. 

    An effect of clusters on the exclusion probability function is seen from Fig. 4.4, where the 
empirical function E(r) obtained by computer simulation is shown by the solid and open circles. 
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Fig. 4.4. Exclusion probability function vs inter-fiber distance: effect of cluster volume content 

 
Here, we plot also E(r) for FRC with uniform micro structure and c = 0.3 (dashed line) and c = 
0.5 (dash-dotted line). As comparison shows, it is rather sensitive to the non-uniformity in 
spatial distribution of fibers. Expectably, a clustered structure contains a larger number of 
closely placed fibers. As a result, the initial slope of E(r) is close to that of uniform structure with 
c = 0.5 rather than c = 0.3 (remind, that the overall fiber volume content in clustered FRC is 
0.3). 
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Fig. 4.5. Peak interface stress distribution: an effect of the cluster volume content 
 
    In Fig. 4.5, the empirical probability function F(σ) (3.4) is shown calculated for the uniform 

and two clustered arrangements of fibers. The dash-dotted (ccl =0.3) and solid (ccl =0.5) curves 
deviate significantly from the dashed line representing the statistically uniform random structure. 
The data in Fig. 4.5 confirm the observation made by Pyrz (1994a) that the mean value of max 
radial stress shifts markedly towards higher values for clustered patterns. It is noteworthy, 
however, that the empirical function F(σ) built over the cluster area and shown by the solid and 
open triangles in Fig. 4.5 is statistically indistinguishable from that one built over the whole cell 
area and shown by dash-dotted and solid lines. It means that clusterization increases the peak 
interface stress on the fibers inside and outside the cluster simultaneously.  
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Fig. 4.6. Peak interface stress vs inter-fiber distance: an effect of clusterization 
 

 By analogy with Fig. 4.2, we match the numerical data in Fig. 4.4 and Fig. 4.5 to get the 
σ(r) for a clustered structure, see Fig. 4.6. The difference between the uniform and clustered 
structure is clearly observable. The "universal" σ(r) curve, valid for any fiber arrangement type is 
improbable: instead, we expect it depending on the meso parameters of non-uniform structure. 
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 5. Micro damage model of FRC 

 
 Practical significance of the developed approach to the peak stress statistics study 
consists in that it provides the theoretical framework for the micromechanical theories of FRC 
strength. Below, we consider one theory of this kind to show the way of incorporating available 
statistical information in the continuum damage model. We assume (a) matrix-fiber interface the 
"weakest link" in FRC and (b) debonding the only micro damage type. Damage criterion is taken 
in the form *max σσ

ϕ
== rrms  where the interface strength const=*σ  for brittle fracture and 

m
cc NN /1** ~)( −= σσ  for fatigue, Nc being a number of loading cycles. Alternatively, one can 

consider σ* varying randomly from fiber to fiber, with a known statistical rule.  
An elementary damage event is an interface crack onset so it seems natural to consider the 

interface crack density [ ]*Pr/ σ≥== mtotdb sNND  as a damage parameter. Provided Ntot 
taken sufficiently large,  

    [ ] ( )PFsD sm /1Pr1 ** σσ −=<−=      (5.1) 

This formula estimates the damage level in terms of applied load and interface strength σ*. 
Assuming interface degradation due to cyclic loading, one can write the damage accumulation 
rule in FRC as 

   })]//([exp{1)( 2
122

/1
3

pm
cc pNpND −−−= − σ     (5.2) 
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Fig. 5.1. Interface damage growth of FRC due to cyclic loading 
 

 In (5.1) and (5.2) we imply that D is sufficiently low and interactions between the cracks 
can be neglected. I.e., this model describes an early stage of interface damage development, 
accompanied by rapid stiffness reduction (e.g., Bronsted et al., 1997; Van Paepegem and 
Degrieck, 2002). At low D, an effect of interface cracks on the effective elastic modulus of FRC 
can be approximated by 

  βσββ −−−=−≈ − })]//([exp{1)0(/)( 2
122

/1
3

** pm
c pNpDEDE  (5.3) 

where β is a factor to be found experimentally or from simulation (Meraghni et al., 1996; Zhao 
and Weng, 1997; among others). Together with (5.2), (5.3) gives an estimate of stiffness 
reduction degree vs number of loading cycles. Predicted by our theory normalized effective 
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Young modulus for the fiber volume content c = 0.2, 0.3, 0.4 and 0.5 is shown in Fig. 5.2, where 
we put β=1.85 and m=3. As seen from the plot, theory reproduces, at least, qualitatively, the 
experimental observations by Bronsted et al. (1997) and Van Paepegem and Degrieck (2002). 
For more details, see Kushch et al (2009). 
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Fig. 5.2. Stiffness reduction of FRC due to cyclic loading 
 

 For each specific composite material, there is a number of factors affecting its strength 
but not taken into account in our theory. The considered model can be generalized in many 
ways, including (a) loading type, (b) interface debonding criterion, (c) fatigue law, (d) residual 
(setting) stress, etc. Incorporation of these (as well as other analogous) features makes the 
model more realistic: at the same time, it necessitates conducting a separate series of 
numerical experiments. The developed approach does not introduce any simplifying 
assumptions regarding the stress fields. In contrast to available continuum theories of FRC 
micro damage, we deal with the local, rather than phase-averaged, stress which justifies 
application of the well-established strength criteria of phase materials and interfaces. Also, the 
proposed model provides a comprehensive account of microstructure and interactions between 
the fibers, captures the essential physical nature of the fatigue process and thus provides a 
reliable theoretical framework for a deeper insight into the fatigue damage initiation and 
accumulation phenomena in a fiber reinforced composite. 

 
 6.  Conclusions 
 

 The continuum model of interface fatigue damage onset and accumulation in FRC has 
been suggested based on the established correlation between the fiber arrangement and the 
peak interface stress statistics. The method combines the multipole expansion technique with 
the representative unit cell model of random structure FRC able to simulate equally well the 
uniform and clustered random fiber arrangements. By averaging over a number of numerical 
tests, the empirical probability functions have been obtained for the nearest neighbor distance 
and the peak interface stress. It is shown that the considered statistical parameters are rather 
sensitive to the fiber arrangement, in particular, cluster formation. An explicit correspondence 
between them has been established and an analytical formula linking the micro structure and 
peak stress statistics in FRC has been found. Application of the statistics of extremes to the 
peak local stress study has been discussed. It is shown that the peak interface stress in FRC 
with uniform micro structure follows Fréchet-type asymptotic distribution rule. 

    Practical importance of the established relationships consists in the following. The 
ultimate goal of our simulations consists in development of the continuum theory of FRC 
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strength. To accomplish this task, we need to link the micro structure parameters to the peak 
local stress statistics and micro damage initiation and accumulation rate. The statistical 
parameters of an actual FRC micro structure and the constants entering the local stress 
distribution functions we found from the numerical experiments would be the input variables of 
this theory.  
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