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Abstract: The model of progressive interface debonding in fiber reinforced composite has been 
developed based on the cohesive-zone approach. The comparison has been made and the 
relationship is shown with the standard LFM model. An interface crack nucleation, onset and growth 
has been studied in detail for a single fiber at first and the effect of CZM parameters on debonding is 
evaluated numerically. Then, the effect on debonding progress of local stress redistribution due to 
interaction between the fibers was studied in the framework of two-inclusion model. The full-scale 
simulation of progressive debonding in FRC using the many-inclusion FCM and RUC models of 
composite has been performed. It has been shown that the developed model provides reliable 
prediction of the progressive debonding phenomenon including the interface crack cluster formation, 
overall stiffness reduction and induced anisotropy of the effective elastic moduli of composite. 
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 1. Cohesive-zone model of matrix-fiber interface  
 
 Non-linearity of the crack propagation (including interface debonding) problem stems 
from two main sources. First, the same geometry of problem (including crack length, crack tip 
position, etc.) varies during the loading time and thus the problem cannot be regarded as linear. 
Second, the physical non-linearity stems from the fact that the material/interface (no matter how 
strong it is) has a finite strength and thus stress is finite in any vicinity of a crack tip, in contrast 
to LMF concept. The only way to get a finite energy release rate (ERR) necessary for crack to 
propagating is to assume a finite length "process zone" of damaged (but not fully separated 
interface edges) as well.  
 The obvious fact is that the non-linear problem in principle cannot be solved by means of 
linear fracture mechanics: in the lucky case, we can approach the solution (within a certain 
accuracy) by a series of LFM problems. The commonly used in literature criteria of interface 
crack onset and propagation are: (a) stress (crack nucleation) criterion: crrF στσ θ ≥),(  ( cσ  is 

an interface strength); (b) energy release rate (crack propagation) criterion: cGG ≥δ  ( cG  is a 
fracture toughness); (c) Linear Fracture Mechanics criteria: stress intensity factor (SIF), crack 
opening displacement (COD), etc. However, their applicability is confined, as a rule, to the 
classical Griffith criterion: given a fixed crack and load, to decide whether or not it will 
propagate? Moreover, the well-known paradox of LFM says that an interface crack onset 
cannot be correctly predicted by either(!) of these criteria, taken individually (e.g., Leguillon, 
2002; Cornett et al, 2006; Taylor, Taylor, 2008). The attempts to resolve this paradox by 
tailoring the coupled stress and energy criterions (e.g., Mantič, 2009) do not - and cannot! - 
solve non-linear problem in the framework of linear theory. At the same time, the above 
mentioned paradox resolves in a simple and physically substantiated way by assuming the 
behavior non-linear of material (or interface) in a vicinity of the crack tip. 
 The above reasons renewed interest in the concepts of cohesive-zone models to 
characterize failure (e.g., Needleman, 1987; Ungsuwarungsri and Knauss, 1987; Tvergaard and 
Hutchinson, 1992;  Xu and Needleman, 1994;  Li et al., 2005). These models are refinements of 
concepts first discussed by Dugdale (1960) and Barenblatt (1962). At their core is the 
introduction of a second fracture parameter in addition to the toughness, Gc. This second 
parameter is a characteristic strength σc, that relates the toughness to the critical crack-tip 
opening required for crack advance. The characteristic strength can be thought of as a measure 
of the maximum strength or, in a more general sense, as a measure of the average strength of 
the interface. The two fracture parameters of characteristic strength and toughness lead to a 
length scale for fracture given by EGc/σc

2, where E is the elastic modulus of material. A 
comparison of this length scale to the characteristic dimensions of the geometry indicates 
whether the assumptions of linear-elastic fracture mechanics are met. If all characteristic 
geometrical lengths are significantly bigger than the fracture length scale or, the same, 
dimensionless number (K-criterion) G* = E*Gc/σc

2R << 1, then Gc alone can be used for failure 
analysis. Otherwise, a cohesive-zone model using both the toughness and characteristic 
strength must be used to analyze fracture. Not only does the cohesive-zone approach eliminate 
the length-scale restrictions imposed by conventional fracture-mechanics, but situations in 
which conventional fracture mechanics is appropriate are easily solved as special cases of the 
more general cohesive-zone framework. Moreover, the nature of the implementation of 
cohesive-zones into numerical analysis (e.g., Xu and Needleman, 1994;  Alfano and Crisfield, 
2001)  results in essentially automatic prediction of fracture, providing a smooth transition 
between different failure regimes. 
 In what follows, we use the bi-linear cohesive zone model (CZM) suggested by Alfano 
and Crisfield (2001). The suggested by this model normal stress - normal opening relationship 
is shown in Fig. 1. It comprises the linearly elastic segment (OA) with contact stiffness Kn and 
the linear stiffness degradation segment (AC). The max contact stress σmax ( = cohesive 
strength σc) reaches in the point A whereas the OA slope depends on the fracture (brittle or 
viscous) mode.  
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Fig. 1. Bi-linear model of cohesive zone (normal traction)  

 
Crack formation starts in the point A and ends in the point C, where the traction at the newly 
created crack surface vanishes completely. From A to C the damage parameter d grows 
linearly, hence unloading and subsequent re-loading goes along the line OB defined by the  
reduced contact stiffness Kn(1 - d). The triangle OAC area is the nothing else but the crack 
opening work, or so-called critical fracture energy Gc. Thus, this criterion combines the fracture 
stress and energy conditions.  
 It worth to mention as well that this model accounts for the scale factor in a natural way. 
In Fig. 1 the x-axis shows displacement (contact opening). It means that despite the equal tress 
state around the congruent (geometrically similar) inclusions, an absolute displacement value is 
proportional to the inclusion size. Hence, for small inclusions the critical values u0 and umax are 
expected at much higher load than for large ones. Other words, "weakening" effect of big 
inclusion is more pronouncing; in particular, the model predicts existence of critical inclusion 
size below which interface crack nucleation for a given interface fracture toughness is 
impossible. This feature agrees well with experimental observations (e.g., Leguillon and Piat, 
2008) which can be regarded as an additional argument in favor of the chosen approach. 
 
 2. Single inclusion problem: interface crack onset and growth 
 
 2.1. Parametric study and comparison with LFM model 
 
 We start our analysis with the simplest model being a single fiber embedded in an infinte 
matrix. However, to the best knowledge of authors, there exists a very few publications (e.g., 
Tan et al, 2006) where even this type model was studied in the case of adhesive matrix-to-fiber 
bonding. To minimize a number of the problem parameters, we put the fiber radius R = 1. We 
consider stress field around the fiber caused by far uniaxial tension; to be specific, we assume it 
acting in y-axis direction. Following Toya (1974), we put the elastic moduli equal to  νm = 0.35, 
µm =1 for the matrix material and νf = 0.22, µf = 44.2/2.39 for the fiber.  Also, we put the interface 
characteristic strength σc =1. In order to get the results comparable with those predicted by 
LFM, we have to meet the condition E*Gc/σc

2 R << 1 where E* =1/(1/Em +1/Ef). This condition 
implies Gc << 1 for σfar = 1; in our first numerical study, we put Gc = 0.004 for both the normal 
and tangential mode.  
         The stress field evolution and crack onset is clearly seen from the Figs 2a-2d, where the 
isolines of max tensile stress σ1 field are shown corresponding to σfar increasing from 0.80 to 
1.0. In fact, for σfar = 0.80, due to stress concentration, the normal interface stress approached 
σc where the interface damage starts to develop. It is seen that stress at the poles is already 
below the peak value. Soon after that, at σfar = 0.85 (Fig. 2b) we already see distinctive interface 
crack with traction-free edges. Subsequent load increase lead to steady crack growth: as seen 
from Fig. 2d, when the crack semi-angle exceeds 60, its propagation becomes more involved 
and affected by the crack opening/closure. 
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   (a) σfar = 0.80      (b) σfar = 0.85 
 

       
   (a) σfar = 0.90      (b) σfar = 1.0. 
 

Fig. 2. Single fiber two-side debonding 
 
Remark. The model we consider clearly shows that, due to symmetry of geometry and loading, interface 
debonding develops at the opposite sides of fiber simultaneously. This simple (and quite predictable) fact 
raises the questions regarding the practical significance of numerous, from the early (Toya, 1974) to 
recent (Mantič, 2009) works where the similar LFM problems for a single fiber with constant interface 
toughness - but with one-side crack (in fact, improbable geometry!) - were considered. It will be shown 
below that two possible reasons of one-side crack formation are (a) variable interface toughness and (b) 
non-uniform stress field around the fiber. 
 
 To produce one-side interface crack in our model, we assume toughness of the bottom 
part of interface much higher as compared with the upper part. It suppresses development of 
the bottom crack: as seen from Fig. 3a, already for σfar = 0.80 (before crack onset) the stress 
field becomes asymmetric in respect to Ox axis. It leads then to formation of crack at the upper 
side of fiber and partial (not complete) unloading of the bottom side, see Figs 3b - 3d.  
 In Figs 4 and 5, the interface normal and tangential stress distribution are shown 
obtained from the CZM (solid circles) and (for σfar = 0.95, solid line) LFM models. It is clearly 
seen that LFM and cohesive zone model give practically identical results which can be regarded 
as the validation of both the developed analytical theory and presented here numerical data. 
The subtle difference is observed only in a close vicinity of the crack tip, where LFM assumes 
the stress to grow infinitely whereas CZM keeps them finite. Instead, in CZM we have a process 
zone of finite length where the interface is weakened - but not completely separated yet. 
However, their most  
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   (a) σfar = 0.80      (b) σfar = 0.85 
   

       
   (a) σfar = 0.90      (b) σfar = 1.0. 
 

Fig. 3. Single fiber one-side debonding 
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Fig. 4. Normal stress evolution during the interface crack formation 
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Fig. 5. Tangential stress evolution during the interface crack formation 

 
principal difference consists in that the cohesive zone model describes crack nucleation and 
propagation whereas LFM cannot do it. 
  
 2.2. Comparison with experiment 
 
 The model we have suggested needs to be verified vs experimental data. Unfortunately, 
a very few publications can be found in literature where the interface toughness parameters 
were studied.  In this and subsequent numerical study we adopt the numbers reported by 
Zhang et al. (1997) and Varna et al (1997) where the transverse tension tests were conducted 
for a single glass fiber embedded into the epoxy matrix. The reported there elastic moduli 
  
- matrix material (Ciba Geigy LY 5052/HY 5052 epoxy resin):     νm = 0.33, Em =2.8 GPa;  
- E-glass fiber (supplied by Owens Corning, 17 µm in diameter): νf = 0.22, Ef =71 GPa.  
According to supplier, tensile strength of fully cured epoxy matrix is 80 - 86 MPa.  
 
 By matching the Toya (1974) model to the experimental observations Zhang et al. (1997) 
and Varna et al (1997) have estimated the interface toughness as Gc = 2 N/m in the case of 
absence the coupling agent (NOCA) and Gc = 10 N/m when the coupling agent was added 
(CA). The similar interface toughness values were reported recently by Caimmi and Pavan 
(2009). The matrix-fiber debonding was observed at tensile stress σfar equal in average to 40 
MPa (NOCA) and 75 MPa (CA). The interface strength σc was not estimated there: however, It 
follows from the above numerical study that it should be close σfar.  
 
 For the assigned properties, the introduced above dimensionless criterion in both cases 
gives G* = E*Gc/σc

2R ≈ 0.5, i.e. the condition Gc << 1 does not meet. It means that the LFM 
model cannot be applied here and we can expect somewhat different behavior of interface. The 
two-side and one-side crack development scenarios shown in Fig 6 supports this thesis. 
Indeed, their comparison with similar data in Fig 3 says that, in contrast to LFM model, in the 
case Gc ~ 1 we have a jump-like instantaneous formation of finite size interface crack, with 
subsequent steady growth due to load increase. Determination of the minimum possible crack 
size defined by the interface strength to toughness ratio is the problem deserving a separate 
study.  
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   Fig. 6. Single fiber one-side debonding : Gc = 0.5 
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  Fig. 7. Debonding semi-angle vs load: comparison with experiment 
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 Some idea of quantitative predictive potential of our model can be drawn from Fig. 7, 
where the debonding semi-angle is shown as a function of applied far load. The stars represent 
the experimental data by Zhang et al. (1997), the line-connected triangles show the results of 
numerical analysis. There was an uncertainty in σc definition so calculations were performed for 
two distinct σc values. The open and solid triangles in Fig. 7 correspond to σc equal to 25 and 30 
MPa, respectively, in the NOCA case and 50 and 60 MPa in the CA case. As seen from the 
plot, correlation between the model and experiment is quite satisfactory for the semi-angle 
values up to 70º. The model predicts this value to be limiting for a given composite: further 
loading leads, instead of crack propagation, to considerable stress concentration in the matrix 
and crack kinking. It seems plausible that large (of order 90º) debonding semi-angle observed 
by Zhang et al. (1997) are caused by the partial matrix destruction or other reasons not 
considered in our model. Noteworthy also that in the experiment an interface crack started from 
pre-existing crack and propagated along the fiber as well, i.e. the stress around the fiber may 
differ from the 2D plane strain considered by us. 
 
 3. Two-fiber model: debonding affected by interaction 
 
 We mentioned already that the interface crack nucleation is sensitive to the stress field 
around the fiber. The one-fiber problem considered by us in the previous subsection, is often 
(probably, too often!) used for evaluating the local stress in FRC. Needless to say, this model is 
has nothing to do with the real high-filled fibrous composite where the stress concentrations due 
to fiber-fiber elastic interaction play a dominant role. These concentrations will dictate, most  
 

  
(a) σ1 = 0.80      (b) σ1 = 0.85 

 

  
(c) σ1 = 0.90      (d) σ1 = 1.0 
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Fig. 8. Two-fiber model: θ12 = π / 2 
 
 
likely, also the place and moment of interface crack onset. We start studying this issue with two-
fiber problem and consider various scenarios of crack growth depending on the mutual position 
(distance and angle). For simplicity sake, we perform simulations for the case of low (G* = 
0.004) interface toughness where LFM model is still valid. For larger G* situation is simialr, with 
a few exceptions which will be discussed later on. 
 The presented at Figs 8  - 10 isolines of max principal stress σ1 demonstrate an effect of 
the pair of fiber orientation angle θ12 with respect to the loading direction, namely, y-axis. We 
keep the distance between the centers of fibers R12 constant and equal 2.2 R. In the case θ12 = 
π / 2 interactions between the fibers is moderate and interface debonding occurs in a way 
similar for that for a single fiber (see Fig. 8). As a result, we get two-side cracks on each of the 
fibers, Fig 8d. In the case θ12 = π / 4, situation is quite different: here, the so-called shielding 
effect  suppresses interface crack nucleation between the fibers and the outer one-cracks grow 
first. Only after they reached the limiting size, the opposite side of fiber starts to debond: note, 
that position of this crack deviates considerably from the inter-fiber zone where the matrix 
deformation and hence debonding is constrained by the much more stiff inclusions. 
 

  
(a) σ1 = 0.70      (b) σ1 = 0.80 

 

  
(c) σ1 = 0.90      (d) σ1 = 1.0 

   
Fig. 9. Two-fiber model: θ12 = π / 4 

 
 The case θ12 = 0 is, however, the most favorable for the interface crack formation. In Fig. 
10a one can see rather high localized stress concentration in the inter-fiber area. Already at σ1 
= 0.40 (Fig. 10b) we have two distinct stress concentration points which will became soon the 
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crack tips. At σ1 = 0.60 (Fig. 3.12c) we have already the open crack and σ1 = 0.80 (Fig. 10d) the 
cracks have reached the equilibrium state. In contrast to Fig. 9, here the one-side interface 
cracks have grown between the inclusions. The situation is somehat more involved for larger 
G*: as was already mentioned, in this case we observe jump-like crack formation. It rather 
difficult to provide two simultaneous "jumps": a subtle variation of interface strength - or even 
finite accuracy of numerical method - may lead to situation where one crack develops first. This, 
in turn, leads to stress re-distribution and their relaxation in the inter-fiber area - and results in 
delay or supressing the another fiber debonding.  
 

 

  
(a) σ1 = 0.20      (b) σ1 = 0.40 

 

  
(c) σ1 = 0.60      (d) σ1 = 0.8 

 
Fig. 10. Two-fiber model: θ12 = 0 

   
 The presented data show clearly that crack nucleation is indeed very sensitive to the 
stress fluctuations around the fiber and thus the many-fiber model is the pre-requisite for 
reliable prediction of progressive debonding in fibrous composite.  
 
 
 4. FCM and RUC models of progressive debonding: interface crack 
 cluster formation and stiffness reduction 
 
 We consider two many-fiber models of fibrous composite, namely, the finite cluster model 
(FCM) and the representative unit cell (RUC) model. The first one is a matrix containing a finite 
array of fibers arranged in that or another way. RUC model represents an infinite periodic 
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structure, an elementary unit cell of which contains a certain number of inclusions: the whole 
volume of composite is obtained by replicating the cell in two orthogonal directions.  
 
 

 
 

Fig 11a. Regular structure FCM: shielding effect  
 
 

 
 

Fig 11b. Regular structure FCM: stress concentration in the points of potential crack tips 
 

 We start with the FCM model containing 64 fibers arranged in a square array. The 
properties used in simulation correspond to those reported by Zhang et al (1997), NOCA case. 
Figs 11a - 11d show stress field evolution and crack formation. At the early stage of loading (Fig 
11a) the peak stresses locate between the fibers, then they divide and move to points of 
potential crack tips (Fig 11b). Next, two lines of interface cracks at the first and last fiber rows 
develop (Fig 11c). It lead to substantial stress re-distribution and at the final step, (Fig 11d) the 



UPWIND.TTC  
   

Deliverable 3.2.3d 
  14/19 

stress in the matrix between the cracks exceed the matrix tensile strength. It means that 
interface cracks will kink in the matrix and coalesce into macro crack.  
 This analysis correctly predicts the main steps in interface crack cluster formation. At the 
same time, it shows a drawback of FCM model consisting in that the outer fibers are more 
heavily loaded as compared with the inner ones (Fig. 11a). This effect manifests itself also in 
the more realistic FCM, with randomly placed fibers (Fig. 12). Here, we again get two crack 
clusters, nearby the top and bottom of the model, respectively, and one extra cluster in the 
central part of model. Noteworthy, all these clusters are oriented across the loading direction. 
 
  

 
 

Fig 11c. Regular structure FCM: debonding onset 
 
 
 

 
 

Fig 11d. Regular structure FCM: debonding growth and coalescence into macro crack 
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  Fig 12a. Random structure FCM: debonding growth (σfar = 28 MPa) 
 
 
 
 

 
 
  Fig 12b. Random structure FCM: debonding growth (σfar = 32 MPa) 
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  Fig 12c. Random structure FCM: debonding growth (σfar = 36 MPa) 
 

 

 
 
  Fig 12d. Random structure FCM: debonding growth (σfar = 40 MPa) 
 
 The principal and, probably, crucial advantage of RUC model consists in that it eliminates 
the discussed above edge effect completely and provides the most realistic description of local 
stress field in FRC. One can expect therefore this model to be also the best in simulation of 
progressive interface debonding phenomena. Typical debonding predicted by this model is 
shown in Fig. 14. It is clearly seen that it produces no edge effects and thus provides an 
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efficient simulation of progressive interface debonding and evaluation of the caused by 
debonding stiffness degradation and macroscopic anisotropy of fibrous composite. 

 

 
 

Fig 14. Random structure RUC: uniaxial loading in y-direction, 0.65% y-strain 
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  Fig. 15  Elastic stiffness reduction due to interface debonding 
 
 
 The FRC stress-strain curves obtained from this model is shown in Fig. 15. Noteworthy, 
matrix and fibers deform elastically so their non-linear behavior is entirely due to progressive 
interface damage. The irreversible strain does not accumulate: unloading is linearly-elastic, with 
reduced Young modulus (dash-dotted lines in Fig. 15). Effective stiffness, strain-induced 
anisotropy and even strength limit of FRC can be estimated using these data. On the other side, 
comparison of the predicted by model stress-strain curves with analogous experimental data 
would help to refine the parameters entering the CZM model of interface. 
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 5. Conclusions 
 
The interface stress grows up rapidly in the area between the fibers perfectly bonded with 
matrix. In terms of strength, it means that one can expect the interface crack onset at the far 
load well below the level predicted by the single-fiber model. 
 
Partial interface debonding causes substantial stress re-distribution and relaxation of the peak 
interface stress on the neighboring fibers. In terms of strength, it means that the interface 
crack formation on a given fiber prevents debonding the nearest neighbor fibers. As to the 
stress relaxation degree, it depends on the crack size and the inter-fiber distance. 
 
The stress intensity factors and the strain energy release rate are greatly contributed from 
elastic interaction between the fibers and are rather sensitive to the fiber arrangement. In terms 
of strength, it means that the interface crack propagation/stopping is mediated by the neighbor 
fibers and cracks. 
 
The adequate model of the progressive interface debonding in FRC must take all these factors 
into account. It is clear that the single fiber model fails completely and the only way out is to 
deal with the multiple fiber models. Among them, the representative unit cell model is, probably, 
the best choice. 
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