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Abstract: The micromechanical fatigue strength theory of fibrous composites has been developed, 

with a special attention to the interface damage onset and accumulation. The method combines the 

multipole expansion technique with the representative unit cell model of random structure composite. 

Both experimental observations and numerical simulation show a clear tendency of the interface 

cracks to form the chain-like clusters, oriented predominantly across the loading direction. Clustering of 

interface cracks, in turn, accelerates the stiffness loss in the direction of loading and increases the 

damage-induced elastic anisotropy of the effective elastic moduli of composite. This is especially true 

for the high-filled FRCs widely used in the engineering practice. It is obvious that a single fiber 

approximation does not work here and one has to look for the multiple fiber models. Among them, the 

multiple fiber representative unit cell model is, probably, the best choice as it provides a 

comprehensive account of microstructure and interactions between the fibers which cannot be 

expected in the mean field or Eshelby-type models. The developed theory captures the essential 

physical nature of the fatigue process and thus provides a reliable theoretical framework for a deeper 

insight into the damage initiation and accumulation phenomena in the fiber reinforced composites. 
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1 Interface damage models: an overview

Mechanical behavior of composite materials is significantly affected by the degree of bonding
between the constituents. Interfacial debonding in the form of arc crack is the predominant
damage mode of unidirectional fiber reinforced composite (FRC) under transverse loading,
resulting in rapid loss of stiffness and strength. From the viewpoint of damage-tolerant design of
composite structures, it is important to provide optimal balance between strength and stiffness.
To achieve this goal, an effect of interface debonding on the performance of composite needs
to be fully understood and adequately implemented in the predictive models.

An effect of weak bond or debonded interface on the mechanical properties has been studied
by several investigators. Benveniste (1985) simulated the imperfect interface by imposing the
continuity of normal displacements and tractions at the interface while allowing a jump in
the tangential displacement. Hashin (1990) assumed the linear relationship between interface
tractions and displacement jumps and used the self-consistent scheme to predict the effective
moduli of the composite. In the work by Lee and Simunovic(2001), the partially debonded
fibers are regarded as equivalent, transversely isotropic inclusions. Only a few publications are
available where the models explicitly involving the interface cracks are considered. Toya (1974)
has obtained the Eshelby-type solution for a single, partially debonded circular inclusion. The
known analytical solutions for the non-uniform far stress field are confined to the works by
Prasad and Simha (2003) and Theotokoglou and Theotokoglou (2002) where the concentrated
force and dislocation applied at the point in the matrix containing a single partially debonded
circular inclusion were considered.

There is a number of publications on stiffness prediction for fibrous composites with interfacial
debonding by means of micromechanics. However, the most existing work is based on models of
varying degrees of approximation in the treatment of fiber interaction and local stress and strain
fields. Among them, the "dilute" composite model (Ju, 1991; Lee and Simunovic, 2001) where
the effect of fiber interaction is neglected. In the self-consistent "composite cylinder" models
used by Teng (1992) and Tandon and Pagano (1996), interaction between fibers is taken into
account in approximate manner. In these works, the debonding configuration consists of two
symmetrically located interface cracks. The Mori-Tanaka method-based model by Takahashi
and Chou (1988) assumes debonding to take place over the entire interface. A dual effective-
medium and finite-element study was carried out by Zheng et al. (2000) and Zhao and Weng
(2002) for a composite containing partially debonded elliptic fiber. In the effective-medium
approach, the fictitious perfectly bonded inclusions were used and the Mori-Tanaka theory was
applied to compute the effective moduli of composite.

In the more advanced, representative unit cell (RUC) approach, an actual FRC is modeled
by the equivalent (in some sense) periodic micro structure with a cell containing a certain
number of inclusions. This model is advantageous in that enables taking into account inter-
actions among a whole infinite array of inhomogeneities whereas the deterministic geometry
enables an accurate solution of the model problem. These features make the RUC approach
appropriate for studying the high-filled strongly heterogeneous composites, where the structure
and interactions between the fibers should be taken into account accurately.

In application to the considered problem, the simplest model of this kind is the composite
with a regular (square of hexagonal) arrangement of equally debonded fibers. In this case,
the composite stiffness can be determined by analyzing a unit cell containing a single fiber.



In the elastic contact model by Shan and Chou (1995), the fiber-matrix interface is assumed
completely debonded. Yuan et al. (1997) simulated the debonded interface is by uni-symmetric
and doubly-symmetric interface cracks. In these papers, the interface bonding conditions are
fixed in the problem statement. The interfacial failure option was implemented by Yeh (1992)
and Aghdam et al. (2008) by means of interface/interphase elements and by Caporale et al.
(2006) who modeled interfacial failure by the brittle-elastic springs.

The drawback of single fiber cell model consists in that it implies all the fibers to be equally
loaded/debonded. In fact, damage of FRC is a progressive and cumulative process governed
predominantly by the micro structure of composite and elastic interactions between the fibers.
These factors cannot be adequately captured by the simple geometry models. Reliable predic-
tion of damage onset/accumulation and resulting evolutionary change of stiffness and strength
requires (a) the quasi-random geometry model statistically close to the micro structure of spe-
cific FRC; (b) accurate evaluation of the local stress concentrations and (c) application of the
adequate interface damage/separation model.

To date, only a few models for the multiple fibers with imperfect interface are available in
literature. Wriggers at al (1998) considered debonding by a contact formulation which can
handle adhesional forces up to a prescribed tensile limit on the contact interface. In the work
by Ghosh et al (2000), interfacial debonding is accommodated by cohesive zone model, in
which normal and tangential springs tractions are expressed in terms of interfacial separation.
The model by Teng (2007) contains a periodic square array of fibers, with a random subset
of them assigned to be completely debonded. The model problem is solved numerically under
assumption of frictionless contact at the debonded interfaces and the effective stiffness of
composite is found by the ensemble averaging. Recently, a complete analytical solution has
been derived by Kushch et al. (2010) for a finite array of interacting, partially debonded circular
inclusions. The developed method combines the superposition principle with the complex po-
tentials technique and results in a simple and highly efficient numerical algorithm. The method
provides an accurate analysis of the local fields, stress intensity factors and the energy release
rate at the interface crack tips which are greatly affected by elastic interaction between the
partially debonded inclusions.

In the present work, we extend the approach by Kushch et al. (2010) on the RUC model of
fibrous composite with interface cracks. The multiple fiber cell geometry is chosen so that it
provides seamless joint with the adjacent cells. A complete analytical solution in displacements
has been obtained in terms of the periodic complex potentials. By analytical averaging the local
strain and stress fields, the exact expressions of the effective transverse elastic moduli have been
found. Several test problems have been solved to check an accuracy and numerical efficiency
of the method. Numerical simulation of interface damage accumulation and clustering in FRC
has been performed and the caused by it stiffness reduction is estimated.

2 Thermodynamic definition of macro damage tensor

The modern continuuum theories used in design of composite structures employ a fourth-rank
macroscopic damage tensor to represent the state of damage in composite materials. It is
worth mentioning that the fourth-rank damage tensor has an appealing correspondence with
the fourth-rank overall compliance tensor. Within the framework of homogenization concept



for inhomogeneous effective continuum medium, one may define the homogenized Gibbs free
energy as (Ju, 1991)

χ ≡
1

2
S : [L∗0 · (I+D)] : S (1)

where S is the volume-average stress tensor, L∗0 = (C
∗
0)
−1 is the effective compliance and C∗0

is the effective stiffness of the undamaged composite material, I is the fourth-rank unit tensor,
D denotes the fourthrank damage tensor, and " : " denotes the tensor contraction operation.
It is emphasized that D is an evolving tensorial state variable, not a constant tensor: see Ju
(1991) for more thermodynamics details.

By the Clausius-Duhem inequality for isothermal process, we have (E is the volume-average
strain)

·
χ−

·

S : E ≥ 0. (2)

The standard Coleman’s method then leads to the following macroscopic stress-strain law and
overall elastic-damage compliance tensor S:

E = L∗ : S; L
∗ = [L∗0 · (I+D)] (3)

together with the damage dissipative inequality:

1

2
S :

·

L
∗ : S > 0, or

1

2
S : [L∗0 ·

·

D] : S > 0. (4)

From (4) it is observed that the evolution
·

L
∗ (or

·

D) plays an essential role in microcrack
energy dissipation and growth.

During a damage loading process, the total strain tensor e is amenable to an additive decom-
position: E = Ee + Ed, where Ee and Ed denote the elastic and damage-induced strains,
respectively. The elastic-damage compliance tensor is also suitable for an additive decomposi-
tion: L∗ = L∗0+L

∗
d, where L∗d signifies the damage-induced compliance. Clearly, the relationship

between L∗d and D can be formally expressed as L∗d = L
∗
0 −D. Therefore, if one can derive

the damage induced compliance L∗d from the "first principles", then one can explicitly express
the fourth-rank damage tensor D by means of micromechanics. The developed below model
of FRC with interface damage provides a reliable basis for the micromechanical theories of
static and fatigue strength of fibrous composites.

3 Micromechenical model of FRC

3.1 Geometry

We consider a quasi-random model of the FRC bulk (Golovchan et al., 1993; Bystroem, 2003;
Chen and Papathanasiou, 2004; Kushch et al, 2008; among others) with the period a along
the axes Ox1 and Ox2, The representative unit cell (RUC) of it containing the centres of Np
of aligned in x3-direction and circular in cross-section fibers is shown in Fig.1. Within a cell,
the fibers can be placed arbitrarily but without overlapping. Alternatively, this model can be
thought as an infinite plane containing Np non-overlapping periodic square arrays of fibers.



The fibers shown by the dashed line do not belong to the cell while occupying a certain area
within it. The fiber volume content is c = Npπ/a

2.

Thus, geometry of the unit cell is given by its side length a and the coordinates (X1q,X2q)
defining the center of qth fiber, q = 1, 2, ...,Np. Number Np can be taken large sufficiently to
simulate micro structure of an actual disordered composite. To reduce a number of parameters
and to simplify the notations, we assume the fibers equally sized, of radius R = 1, and made
from the same material.

a

a

x1p 

x1

x2

Zq 

x2p

Zp Zp+a 

Zpq 

Fig. 1. RUC model of fibrous composite

Besides the global Cartesian coordinate system Ox1x2, we introduce the local, fiber-related
coordinate systems Ox1qx2q with origins in Oq. Also, we will use the following complex-value
variables

z = x1 + ix2, zq = x1q + ix2q; (5)

representing the point x = (x1, x2)
T in the complex planes Ox1x2 and Ox1qx2q, respectively.

The global complex variable z = zq + Zq, where Zq = X1q + iX2q, q = 1, 2, . . . ,Np. The
local, fiber-associated variables zp = z − Zp relate each other by zq = zp − Zpq, where
Zpq = Zq − Zp = X1pq + iX2pq is the complex number defining relative position of the
fibers with indices p and q. The parameter Zpq is understood here as the minimum distance
between the fibers of pth and qth lattice type arrays (solid arrow in Fig. 1) and implies
|Xjpq| < a/2, j = 1, 2. In these notations, the fiber-fiber non-overlapping condition is written
as |Zpq| > 2R. The parameter often introduced in the many-fiber models of FRC is the
"minimum allowable inter-fiber spacing" δmin = min

p,q
|Zpq| /2R− 1 (Chen and Papathanasiou,

2004). It is usually assigned some small positive value in order to separate inclusions and thus
alleviate an analysis (either analytical or numerical) of the model BVP. In our numerical study,
we put δmin = 0.01.

The quasi-random geometry shown in Fig.1 is generated using the molecular dynamics al-
gorithm of growing particles (e.g., Kushch et al., 2008). This model was studied by several
authors under assumption that the matrix and fibers are perfectly bonded along the inter-
faces Lq, q = 1, 2, . . . , Np.. We consider more general case by assuming the part L(q)c of

interface Lq defined by the endpoints z
(q)
j = exp(iθ

(q)
j ) (j = 1, 2) separated and the part



L
(q)
b = Lq\L

(q)
c being perfectly bonded. ζq = zq/z

(q)
c , where z(q)c = exp(iθ(q)c ) is the crack

midpoint: θ(q)c = (θ
(q)
1 + θ

(q)
2 )/2. θ

(q)
2 − θ

(q)
1 = 2θ

(q)
d ; in the prefect bonding case, θ

(q)
d = 0. To

the best knowledge of the authors, the multiple fiber RUC model with interface cracks never
been considered before.

3.2 Problem

By adopting 2D model we assume ∂σij/∂x3 = 0: within this framework, the (a) plane strain,
(b) plane stress and (c) anti-plane shear (in x3-direction) problems can be studied. Specifically,
we consider the plane strain problem (u3 = 0). Both the matrix and fiber materials are isotropic
and linearly elastic.

The complex displacement u = u1 + iu2, where ui are the Cartesian components of displace-
ment vector u = (u1, u2)

T . Specifically, u = u0 in the matrix material with a shear modulus
µ0 and Poisson ratio ν0 ; uq, µ1 and ν1 refer to displacement and elastic moduli, respectively,
of qth fiber, q = 1, 2, . . . , N. . In the adopted by us open-crack model, the traction-free
crack surface is assumed. The relevant boundary conditions are:

[[u]]
L
(q)
b

= [[Tr]]L(q)
b

= 0, Tr|L(q)c = 0, q = 1, 2, . . . , Np. (6)

where Tr = σrr + iσrθ is the complex traction at the circular interface L(q). Here, [[f ]]L =
f |L+ − f |L− denotes the function f jump through the interface L, L+ and L− being the
matrix and fiber, respectively, sides of interface L.

We consider the macroscopically uniform stress state of the composite bulk, which implies
constancy of the volume-averaged, or macroscopic, strain E = {Eij} = {〈εij〉} and stress
S = {Sij} = {〈σij〉} tensors, where 〈f〉 = V −1

∫
V f dV and V = a2 is the cell volume.

In the problem we consider, the far field load is given by the macroscopic strain tensor E.
This statement is typical in the homogenization problem where the macroscopic, or effective,
moduli are to be determined. On the contrary, using the macroscopic stress tensor S as the
load governing parameter is preferable in the local stress concentration study. For this purpose,
the established below simple relationships (27) and (28) can be utilized. Next, it is of common
knowledge that, under assumption of uniform macroscopic stress, the periodic geometry results
in periodicity of the relevant physical fields. In our case, periodicity of the strain and stress
fields

σij (z + a) = σij (z + ia) = σij (z) (7)

can be alternatively regarded as the cell boundary condition providing continuity of the dis-
placement and stress fields between the adjacent cells.

In (7), σij are the components of the stress tensor are given by

σij
2µ
= εij + δij

(3− κ)

2(κ − 1)
θ, θ = ε11 + ε22; (8)

and εij =
1
2

(
∂ui
∂xj
+ ∂uj

∂xi

)
are the components of the strain tensor. Due to (7), the displacement

field is the quasi-periodic function of coordinates:

u(z + a)− u(z) = (E11 + iE12)a; u(z + ib)− u(z) = (E12 + iE22)a. (9)



3.3 Solution

We consider the RUC model of FRC (Fig. 1), subjected to the uniform macroscopic strain
E. In accordance with the superposition principle, we write a general displacement solution of
this problem as a sum of the linear far field u∞ determined entirely by the E tensor and the
periodic fluctuation, caused by the inhomogeneities. Namely,

u0(z) = u
∞(z) +

Np∑

p=1

z(p)c u
∗(p)
s (ζp) (10)

where the fiber disturbance terms u∗sp are given by the sums over all the square lattice nodes
k = {k1, k2} (−∞ < k1, k2 <∞) :

u∗(p)s (ζp) =
∑

k

u(p)s

(
zp +Wk

z
(p)
c

)
, Wk = (k1 + ik2)a. (11)

It has been shown by Kushch et al. (2010b) that u∗(p)s can be expressed in terms of the peri-
odic complex (harmonic) potentials S∗n(z) =

∑
k (z +Wk)

−n and their biharmonic S∗∗n (z) =∑
k |z +Wk|

2 (z +Wk)
−(n+2) counterparts (Movchan et al., 1997). In particular,

ϕ∗(p)s (ζp) =
∞∑

n=1

a
(p)
−n

(
z(p)c

)n
S∗n(zp). (12)

The exposed above solving procedure, with two amendments, applies to this problem. First, we
require u0(z) (10) to obey the periodicity conditions (9). This condition gives us the far field
u∞(z) (16) coefficients Γ1 and Γ2. By substituting (10) into (9) and taking into consideration
S∗n(z) = S

∗
n(z+ a) = S

∗
n(z + ia)− δn12πi/a and S∗∗n (z) = S

∗∗
n (z+ a) = S

∗∗
n (z+ ia), we find

Γ1 =
E11 + E22

2
+ ReΓΣ; Γ2 =

E22 − E11
2

+ iE12 + ΓΣ; (13)

where

ΓΣ =
π

V

N∑

p=1

[
κ0a

(p)
−1

(
z(p)c

)2
− a

(p)
−1

(
z
(p)
c

)2
+ c

(p)
1

]
. (14)

Second, a set of equations from where the unknown series coefficients can be found is written
as

I
(q)
k =

2µ0

2πz
(q)
c

∫ 2π

0



u

∞(z) +
Np∑

p �=q

z(p)c u
(p)
s (ζp) +

Np∑

p=1

z(p)c
∑

k�=0

u(p)s

(
zp +Wk

z
(p)
c

)
 t

−k
q dθq. (15)

The integrals entering (15) can be evaluated either analytically or numerically. The far field
u∞(z) is assumed to be linear function of coordinates, i.e.,

u∞(z) = Γ1z − Γ2z. (16)



Its analytical integration is elementary and yields

I
(q)
k =

2µ0

2πz
(q)
c

∫ 2π

0
u∞(Zq + z

(q)
c tq)t

−k
q dθq =





−2µ0Γ2
(
z(q)c

)−2
, k = −1;

2µ0u
∞(Zq)/z

(q)
c , k = 0;

2µ0Γ1, k = 1;

(17)

and I(q)k ≡ 0 otherwise.

The first sum in (15) contains contributions from the adjacent fibers, where Zpq is understood
as the minimum distance (|Xjpq| < a/2, j = 1, 2) between the fibers belonging to the lattices
with indices p and q, see Fig. 1. It can be integrated either analytically or numerically. The
second sum contains contributions from the "far" fibers. Provided the number Np of fibers in
the cell is sufficiently large, the cell size a≫ 2R and |Zpq| ≫ 2R for all fibers contributing to
this sum. Therefore, analytical integration is justified here and yields

Np∑

p=1

z(p)c

z
(q)
c

∞∑

n=1

{
κ0A

∗pq
nk a

(p)
−n + n(B

∗pq
nk + C

∗pq
nk )a

(p)
−n +D

∗pq
nk c

(p)
n

}
(18)

In (18), the coefficients A∗pqnk , B∗pqnk , C∗pqnk and D∗pq
nk are given by the formulas from

Apqnk =





(−1)k (n+k−1)!
(n−1)!k!

(
z(p)c

)n (
z(q)c

)k
Σpq∗n+k, k > 0;

0, otherwise;
(19)

Bpqnk =





(−1)k+1 (n−k+2)!
(n+1)!(1−k)!

(
z(p)c

)n+2 (
z(q)c

)−k
Σpq∗n−k+2, k ≤ 1;

0, otherwise;
(20)

Cpqnk =





(−1)k (n−k)!
(n−1)!(−k)!

(
z(p)c

)n+2 (
z(q)c

)−k
Σpq∗∗n−k , k < 0;

0, otherwise;
(21)

Dpq
nk =





(−1)k (n−k−1)!
(n−1)!(−k)!

(
z(p)c

)n (
z(q)c

)−k
Σpq∗n−k, k < 0;

0, otherwise.
(22)

where

Σpq∗n =
∑

k�=0

(Zpq +Wk)
−n, Σpq∗∗n =

∑

k�=0

|Zpq +Wk|
2

(Zpq +Wk)n+2
(23)

are the standard harmonic and biharmonic, respectively, lattice sums.(see, e.g., Movchan et

al., 1997; Kushch, 2010). After we have u∞(z) determined (13) and I
(q)
k expressed in terms

of a
(p)
−n and c(p)n (18), the problem is effectively reduced to that one considered by Kushch et

al. (2010). For the details of derivation, see Kushch et al. (2010b).

3.4 Effective stiffness

The analytical solution obtained in the previous Section provides an accurate and efficient
evaluation of the local strain and stress fields in any point of the representative cell of composite



and thus enables a comprehensive parametric study of the stress concentrations, the stress
intensity factors and energy release rate at the interface crack tips in FRC depending on
volume fraction and arrangement of fibers, loading type and interface damage degree. On the
other hand, the strain and stress fields given by this solution can be integrated analytically
to get the finite form exact expression of the macroscopic, or effective, stiffness tensor C∗

defined by

〈σij〉 = C
∗
ijkl 〈εkl〉 . (24)

In the plane strain problem we consider, the stress field is macroscopically homogeneous and
governed by the strain tensor E = {〈εkl〉}. Hence, the effective transverse elastic moduli
C∗1111, C

∗
1122, C

∗
2222 and C∗1212 can be determined from (24) as C∗ijkl = 〈σij〉 = V −1

∫
V σijdV ,

where the stress field corresponds to the macroscopic strain Ekl = 1, Ek′l′ = 0 for k′ �= k and
l′ �= l.

To simplify the integration procedure, we write the bulk and shear invariants of the strain
tensor as

θ = ε11 + ε22 = 2Re
∂u

∂z
; ε22 − ε11 + 2iε12 = −2

∂u

∂z
. (25)

Then, we apply the Gauss formula written in complex variables as

∫

V

∂u

∂z
dV =

1

2

∫

L

u(n1 − in2)dL, (26)

where L is the boundary of V and (n1, n2)
T is the outer normal to L unit vector. Integration

procedure is rather straightforward (for details, see Kushch et al., 2010b) and gives the simple
exact formulas:

S11 + S22
2

=
2µ0 (E11 + E22)

(κ0 − 1)
+
2π

a2
(κ0 + 1)

(κ0 − 1)

N∑

q=1

c
(q)
1 . (27)

S22 − S11 − 2iS12 = 2µ0 (E22 −E11 − 2iE12) +
2π

a2
(κ0 + 1)

N∑

q=1

a
(q)
−1

(
z(q)c

)2
. (28)

Together with (24), relations (27) and (28) enable evaluation of the effective transverse elastic
moduli C∗1111, C

∗
1122, C

∗
2222 and C∗1212 of unidirectional fibrous composite with interface cracks.

To find C∗2323 and C∗1313, one has to consider longitudinal shear in fiber axis direction. In
mathematical sense, this problem is equivalent to the transverse conductivity (2D Laplace)
problem. In application to unidirectional fibrous composite with interface cracks, this problem
has been solved recently by Kushch (2010) and we use the obtained there the exact, analogous
to (28) formula for C∗2323 and C∗1313 evaluation.

Remind that our analysis is based on the open crack model (6), adopted in the problem
statement. The load-free boundary conditions imposed on the surface of an interface crack
lead to a crack-tip oscillating singularity and local overlapping of the surfaces in a vicinity of
the crack tip (Toya, 1974). However, Chao and Laws (1992) have shown that under uniaxial
loading conditions considering the interface contact results in little difference for the transverse
Young’s moduli of the composite, see also Yuan et al. (1997). Therefore, we expect (24) to
be valid for the predominately tensile loads. The compressive loading leads to the interface
cracks closure: this case requires a separate, contact mechanics based consideration.



4 Numerical experiment

4.1 Stiffness reduction vs interface crack density

The single fiber cell cannot be regarded as a reliable model of real-world fibrous composite as
far as it assumes the fibers to be periodically arranged and equally debonded. Considered by
us the multi-fiber RUC model (Fig.1) is much more realistic and flexible in modeling the micro
structure and interface damage of random structure FRC. The experimental observations
(e.g., Tsai, 1988; Joffe, 1999) show the one-side interface cracks to be a prevailing form
of interface damage in a random composite. Their nucleation and propagation is strongly
influenced by the local stress field which, in turn, is affected by the elastic interaction between
the fibers. The interface debonding criteria is still a subject under study (e.g., Mantich, 2009):
the theoretrical model (Toya, 1974) predicts and the instrumental observations (e.g., Zhang
et al., 1997) confirm the fact of unstable growth of newly originated crack along the interface
up to θd ≈ π/3; after that, it stops or kinks into the matrix. Hence, an interface damage
accumulates mainly by adding new interface cracks of approximately same size rather than
by gradual stable growth of the pre-existing cracks. Therefore, the interface crack density d
defined as a ratio of the number of interface cracks Ndb to the overall number Np of fibers per
area unit (or, equivalently, per RUC) seems to be an appropriate measure of interface damage
level.

In order to estimate an effect of interface crack density d = Ndb/Np on the effective elastic
moduli of composite, we consider four test problems for the RUC containing Np = 100 fibers
(c = 0.5), uniaxially loaded in x2-direction. For all interface cracks, θd = π/3. In the first two
cases, the fibers were arranged in a (10× 10) square order. A random subset of Ndb(< Np)
fibers with interface crack was defined with aid of the random number generator and the
effective transverse elastic moduli C∗1122, C

∗
2222 and C∗1212 were calculated for the defined this

way geometry of RUC. In the case 1, the cracks were equally positioned and centered in the
point θc = π/2 where the normal interface stress reaches a maximum. In the case 2, the
upper (θc = π/2) and bottom (θc = −π/2 ) cracks are equally probable. The similar model
suggested by Teng (2007) contains a random subset of fibers with entirely debonded interfaces.
The cases 3 and 4 are analogous to cases 1 and 2, respectively, but with random arrangement
of fibers within the cell.

All the mentioned models possess a certain degree of randomness. In order to get the statisti-
cally meaningful data, a series of computer-aided experiments has been performed for each set
of input parameters, with subsequent statistical postprocessing. The ensemble-averaged (over
20 runs) simulation results are shown in Figs. 2 and 3 by the solid and dash-dotted lines.d.

As seen from the plots, the effective elastic moduli are substantially affected by the interface
damage parameter, d. At the same time, specific (upper/bottom) location of crack has a minor
effect for both regular and random arrangement of fibers. Noteworthy, C∗2222(d) is practically
insensitive to the fiber packing type whereas the moduli C∗1122(d) and C∗1212(d) of the random
structure composite are considerably higher as compared with the periodic one.
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4.2 Modeling the interface crack cluster formation

The considered above models enable an estimate of composite stiffness reduction vs interface
crack density. However, a drawback of these models consists in that position and orientation of
the interface cracks was prescribed in random manner, regardless of the micro geometry and
local stress field. In fact, micro geometry of fibrous composite and loading type predetermine,
to a large extent, the interface damage development. It seems plausible to suggest the peak
interface stress point as the most probable place of interface crack onset. The crack propagation
along the interface of a given fiber causes partial unloading of this fiber and re-distribution
of the released load between the adjacent fibers. In turn, it increases the stress concentration
on them and, hence, risk of damage of the neighboring interfaces, etc. This mechanism is
responsible for the interface damage spreading and formation of the observed experimentally



(e.g., Tsai, 1988; Joffe, 1999) chain-like clusters of interface cracks.

To model the interface crack cluster formation, the following iterative algorithm will be used.
First, the RUC geometry (either random or periodic) with prescribed fiber volume content
is generated and the model problem is solved under assumption that all the fibers perfectly
bonded with matrix. The uniaxial tensile load is applied in x2-direction. Next, we evaluate local
stress field and look for a point where the absolute maximum of the normal interface stress
is reached. Then, we modify the model geometry by adding the interface crack (as before,
θd = π/3) centered in this point and solve the model problem again, etc. The aim of this
simulation is to answer the question: how does debonding propagate?

We start with the periodic (10×10) RUC geometry (Np = 100) where, in absence of debond-
ing, all the fibers are equivalent. In order to produce an initial disturbance, a single interface
crack with θc = π/2 is nested in the central part of cell.In Fig. 4, the interface cracks are

Fig. 4. The interface cracks cluster (periodic composite)

shown by the line segments (chords), the consecutive numbers demonstrate an order in which
the cracks appear. As seen from the plot, a chain of interface cracks is orthogonal to the
loading direction and grows in two sides simultaneously. An analysis shows that clustering
greatly accelerates the effective stiffness loss in the direction of loading. For the periodic com-
posite weakened by the uniformly distributed interface cracks (d = 0.1), C̃1122 = 1.38 and
C̃2222 = 1.97, see Fig. 3. For the clustered structure with the same cracks density shown in
Fig. 4, C̃1122 = 1.22 and C̃2222 = 1.64. For d = 0.2, an effect of cluserization is even more
pronouncing: C̃1122 = 1.23, C̃2222 = 1.68 and C̃1122 = 1.02, C̃2222 = 1.26 in the case of
uniform and clustered distribution of interface cracks, respectively. It is not obvious, however,
that this crack density can be reached because, after formation of the chain of interface cracks
shown in Fig. 4, the most probable event is their kinking into matrix and coalescence into the
macro crack.

The analogous simulations for the random geometry RUC have been performed. The typical



result of simulations is shown in Fig. 5. Here, we also observe a clear tendency of the interface
cracks cluster formation, but after a certain period of initial scattered damage accumulation.
It has been shown elsewhere (e.g., Kushch et al., 2008) that the random structure composite
contains a relatively small fraction of fibers with rather high stress concentration. These fibers
debond at the initial stage of loading; then, the chain-like cluster of interface cracks starts
to develop. The effective moduli C̃1122 and C̃2222 are equal to 1.50 and 1.70, respectively,

Fig. 5. The interface cracks cluster (random composite)

for d = 0.1 and 1.23 and 1.36 for d = 0.2. For comparison, the moduli C̃1122 and C̃2222 of
composite with uniformly distributed cracks (Fig. 6) are equal to 1.65 and 1.96 (d = 0.1) and
1.48 and 1.71 (d = 0.2). The dependencies C̃1122(d) and C̃2222(d) in the case of clustered
interface cracks are shown by the open circles in Figs 2 and 3 for the regular and random fiber
arrangement,respectively. The conclusion drawn from this study consists in that clustering the
interface cracks greatly reduces the effective stiffness in the loading direction and increases
the damage-induced elastic anisotropy of fibrous composite.
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Noteworthy, a similar debonding pattern is observed in the random structure FRC by Kushch et 

al (2008) who used the RUC model under complete debonding assumption.  

 

 
 

            (a)     (b) 

 

Fig. 6. Debonding path in the random structure FRC:  

(a) - simulation by Kushch et al (2008), (b) - experiment by Gamstedt and Andersen (2001) 

 

 

In Fig. 6a, the typical simulation result is given whereas Fig. 6b shows the experimentally 

observed (Gamstedt and Andersen, 2001) crack path. The analogous experimental data have 

been obtained by other authors (e.g.,Tsai, 1988). 

 

 
4.3. Conclusions from numerical study 
 

Numerical simulation of progressive debonding in fiber reinforced composite using the 

many-fiber RUC model of composite shows that: 

 

    (a) the interface stress grows up rapidly in the area between the fibers perfectly bonded 

with matrix. In terms of strength, it means that one can expect the interface crack onset at the 

far load well below the level predicted by the single fiber model; 

 

    (b) partial interface debonding causes substantial stress re-distribution and relaxation of 

the peak interface stress on the neighboring fibers. In terms of strength, it means that the 

interface crack formation on a given fiber prevents debonding the nearest neighbor fibers. As to 

the stress relaxation degree, it depends on the crack size and the inter-fiber distance; 

 

    (c) the stress intensity factors and the strain energy release rate are greatly contributed 

from elastic interaction between the fibers and are rather sensitive to the fiber arrangement. In 

terms of strength, it means that the interface crack propagation is mediated by the neighbor 

fibers and cracks; 

 

    (d) the interface cracks show a clear tendency to form the chain-like clusters, oriented 

predominantly across the loading direction. Clustering of interface cracks, in turn, accelerates 

the stiffness loss in the direction of loading and increases the damage-induced elastic anisotropy 

of the effective elastic moduli of composite. 

 

    All said above is especially true for the high-filled FRCs widely used in the engineering 

practice. It is quite obvious that a single fiber approximation does not work here and one has to 

look for the multiple fiber models. Among them, the multiple fiber representative unit cell model 

is, probably, the best choice. 
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 5. Micromechanical theory of FRC damage/strength 
 

 Practical significance of the developed approach consists in that it provides the reliable 

theoretical basis on which the micro mechanics-based theories of FRC strength can be 

formulated. Below, we consider a simplest theory of this kind which, nevertheless, gives an idea 

of how available statistical information can be incorporated into the continuum damage model. 

Specifically, we assume (a) matrix-fiber interface the "weakest link" in FRC and (b) debonding 

the only micro damage type. Damage criterion is taken in the form 
*

max σσ
ϕ

== rrms  where 

the interface strength const=*σ  for brittle fracture and 
m

cc NN
/1**

~)(

−= σσ  for fatigue, Nc 

being a number of loading cycles. Alternatively, one can consider σ* varying randomly from fiber 

to fiber, with a known statistical rule.  

 

 As was said above, at the initial stage of loading, a scattered interface damage is 

observed at the fibers with a high peak stress and an interaction of defects is relatively weak. 

This stage is well-described by the statistically substantiated continuum theory of FRC 

damage/strength, developed by Kushch et al (2009). An elementary damage event is an 

interface crack onset so it seems natural to consider the interface crack density 

[ ]*

Pr/ σ≥== mtotdb sNNd  as a damage parameter. Numerical study shows that there 

always (regardless of c) exists a relatively low fraction of fibers with high interface stress. The 

maximum stress is localized between the closely placed fiber pairs and exceeds greatly the 

mean stress value. In terms of interface strength it means that debonding will occur in these "hot 

spots" much earlier than in the other sites. This observation correlates well with - and can be 

quite plausible explanation of - the experimentally observed (Brøndsted et al., 1997; Talreja, 

2000; Van Paepegem and Degrieck, 2002; among others) rapid FRC stiffness degradation due 

to matrix-fiber debonding at the initial stage of cyclic loading. With a high degree of probability, 

the peak interface stress distribution in FRC with uniform random arrangement of fibers follows 

Fréchet rule. Using the simulation data, the Fréchet distribution parameters have been found as 
the functions of fiber volume content c:    
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Fig. 7. Empiric probability function of the peak interface stress σm: an effect of fiber volume content 
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Provided Ntot taken sufficiently large,  

 

    [ ] ( )PFsd sm /1Pr1

** σσ −=<−=      (30) 

 
This formula estimates the damage level in terms of applied load and interface strength σ*. 

Assuming interface degradation due to cyclic loading, one can write the damage accumulation 

rule in FRC as 
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Fig. 8. Interface damage growth of FRC due to cyclic loading 

 

 
 In (30) and (31) we imply d to be low so interactions between the cracks can be 

neglected. I.e., this model describes an early stage of interface damage development, 

accompanied by rapid stiffness reduction (e.g., Bronsted et al., 1997; Van Paepegem and 
Degrieck, 2002). At low d, an effect of interface cracks on the effective elastic modulus of FRC 

can be approximated by 

 

  βσββ −−−=−≈
−

})]//([exp{1)0(/)(

2

122

/1

3

** pm

c pNpDEDE  (32) 

where β is a factor to be found either experimentally or from simulation (Meraghni et al., 1996; 

Zhao and Weng, 1997; among others). Together with (31), (32) gives an estimate of stiffness 

reduction degree vs number of loading cycles. Predicted by our theory normalized effective 
Young modulus for the fiber volume content c = 0.2, 0.3, 0.4 and 0.5 is shown in Fig. 9, where 

we put β=1.85 and m=3. As seen from the plot, theory reproduces, at least, qualitatively, the 

experimental observations by Bronsted et al. (1997) and Van Paepegem and Degrieck (2002). 

For more details, see Kushch et al (2009). 
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Fig. 9. Stiffness reduction of FRC due to cyclic loading 

 

    With the load (and hence damage level) increased, an interaction between the interface 

defects becomes more and more substantial and leads, in particualr, to the crack clusters 

formation. It makes practically impossible development of the closed form theory of FRC 

strength with a scalar damage parameter, able to predict correctly the damage onset and 

development under the general type loading.  

 

  
  

  Fig. 10. Flowchart of progressive fatigue damage model 
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     Instead, in a general case: 

 
    I. One has to use the tensorial measure of gamage, i.e., the above introduced macro 

damage tensor D.  

 
    II. For the micro structure of composite and loading type given, its evolutionary behavior is to 

be determined from the stepwise computational experiment rather then calculated from the 

formulas. The typical flowchart of progressive  fatigue damage model is shown in Fig.10. 

Noteworthy, it is similar to those suggested for the continuum (macro level) models of FRC by 

Shokrieh and Lessard (2000), Tay et al (2008), among others, and consists of the three 

components: stress analysis, failure analysis, and material property degradation rules. 

 
    III. The multi-scale, hierarchical approach is the only way to predict mechanical behavior of 

FRC correctly. At the macro level, FRC is considered as an anisotropic solid with stiffness C* 

and damage D as the internal state variable. The macro stress field of FRC-based structure 

given by solution of the relevant model problem, defines the loading type assumed in the micro 

model. Contrariwise, the interface strength value and degradation rate entering the 

micromechanical model as input parameter, comes from the sub-micro level and hence requires 

a separate consideration by means of the mechanics and physics of solids. In fact, one has to 

solve the problem for all three levels simultaneously. This is especially true in the case of fatigue 

where the history of loading and damage accumulation predetermine the FRC future behavior. 

 

 

 

6. Concluding remarks 
 

For each specific composite material, there is a number of factors affecting substantially its 

strength but not taken into account in our theory. The considered model can readily be 

generalized in many ways, including (a) loading type, (b) interface debonding criterion, (c) fatigue 

law, (d) residual (setting) stress, etc. Incorporation of these (as well as other analogous) features 

makes the model more realistic: at the same time, it necessitates conducting a new series of 

numerical experiments by analogy with those described above. This work would be the subject 

of a separate study: here, we emphasize only that the developed approach does not require 

introducing any simplifying assumptions regarding the stress fields. In contrast to the most 

existing continuum theories of FRC micro damage (for their comprehensive review see, e.g., 

Degrieck and Van Paepegem, 2001), we deal with the local, rather than phase-averaged, stress 

which justifies application of the well-established strength criteria of phase materials and 

interfaces. Also, the proposed model provides a comprehensive account of microstructure and 

interactions between the fibers which cannot be expected in the theories based on the mean 

field or Eshelby-type models. Thus, the proposed approach captures the essential physical 

nature of the fatigue process and thus provides a reliable theoretical framework for a deeper 

insight into the fatigue damage initiation and accumulation phenomena in a fiber reinforced 

composite. 
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