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A statistical computational model of strength and damage of unidirectional carbon fiber reinforced com-
posites under compressive and cyclic compressive loading is presented in this paper. The model is devel-
oped on the basis of the Budiansky–Fleck fiber kinking condition, continuum damage mechanics concept
and the Monte-Carlo method. The effects of fiber misalignment variability, fiber clustering, load sharing
rules on the damage in composite are studied numerically. It is demonstrated that the clustering of fibers
has a negative effect of the damage resistance of a composite. Further, the static compressive loading
model is generalized for the case of cyclic compressive loading, with and without microdegradation of
the matrix, and with and without random variations of loading. It was observed that the random varia-
tions of loading shorten the lifetime of the composite: the larger the variability of applied load, the
shorter the lifetime.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Compressive strength of unidirectional fiber reinforced com-
posites is of great importance for many practical applications.
The micromechanisms of compressive strength are different from
the mechanisms of tensile or shear strength, and are strongly influ-
enced by the microstructure imperfections, like fiber misalign-
ment, waviness, etc.

The purpose of this work is to investigate the effect of microstruc-
ture and the statistical distribution of microstructural parameters of
the composites on the damage, compressive and fatigue strength of
unidirectional fiber reinforced composites. A statistical computa-
tional model of a composite with a number of randomly distributed
and randomly misaligned fibers was developed. Testing this model
(under compressive loading along the averaged fiber axis with dif-
ferent fiber arrangements and phase properties, under cyclic com-
pression with constant, random increasing and decreasing
loadings), we could analyze the effect of the microstructural param-
eters of the composites, like the fiber clustering, variability of fiber
misalignment, matrix hardening, etc. on the compressive strength
of the composite.

2. Modelling of compressive failure of composites: a brief overview

The damage mechanisms of unidirectional composites under
compressive loading differ strongly from those under tensile
ll rights reserved.

hnaevsky Jr.).
loading [1–3], and require therefore the application of different
modeling approaches. In many cases, kinking of fibers is the dom-
inant compression failure mechanism [4,5]. According to Moran
et al. [5], kinking of fibers can be separated into three stages: incip-
ient kinking (microbuckling of fibers, caused by imperfections of
microstructures and matrix shears), transient kinking (kink band
propagation, unstable rotation of fibers within the band tip, and
strong shear deformation of matrix, up to the locking the fibers
in their orientation) and steady-state kink band broadening.

Traditionally, the first stage of the kinking, incipient kinking,
has been modeled with the use of the analytical methods of
theories of elasticity [6–9], and, later, plasticity [10–11]. Rosen
[7,8] and Schuerch [9] pointed out to the role of elastic instabil-
ities in the fiber buckling, and derived formulas for composite
failure stress using the elastic microbuckling analysis. Argon
[10] and Budiansky [11] included the effects of matrix plasticity
and the initial misalignment of fibers into the analytical models,
and determined the critical compressive stress as shear yield
stress divided by the initial fiber misalignment angle. Their anal-
yses were further generalized by including the cases of elastic
plastic matrix [11] and the plastic strain hardening of the matrix
[12]. Following the works by Argon and Budiansky, several
authors considered the effect of imperfections of fiber shapes
and orientation on the composite strength, e.g., the effects of
sinusoidal regular and irregular fiber waviness [13], as well as
sinusoidal imperfections with variable (decaying) amplitude
[14], and combination of global (sinusoidal waviness of fibers
along their axis) and local (sine wave added to a strip of many
fibers at free left side) imperfections [15].
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Different methods have been used to derive formulas for the
critical condition of kinking and buckling of fibers: on the basis
of the classical beam theory [13], Rice’s theory of the localization
of plastic deformation [16–17], on the basis of bifurcation analysis
and rate constitutive equations for fiber composites [16], Timo-
shenko shear deformation beam model [18], 3D finite element sim-
ulations of cylindrical fiber, embedded to cylindrical matrix [19].

In a series of works, the interaction and competition between sev-
eral damage mechanisms (fiber splitting vs. kinking, matrix cracking
vs. kinking) was considered. So, Jensen developed a non-dimen-
sional criterion D, characterizing the failure mode (matrix cracking
vs. fiber kinking) in the composite, by combining a unit cell model
with the model of kinking based on the Rice’s plastic localization
theory [16,17].

A number of models of the later stages of kinking, the propaga-
tion and broadening of kink bands are based on the fracture
mechanics methods [21–25].

The effects of local imperfections of microstructures seems to
be one of the most important questions in predicting the compres-
sive strength of composites: over decades, a growing attention is
attracted to every kind of imperfection, and each considered
imperfection (misalignment, waviness, etc.) plays an important
role for the composite strength.

In many works, the fiber misalignment is assumed to be a con-
stant value over the specimen. However, there are experimental evi-
dences that the fiber misalignment is a random value and follows the
Gaussian distribution law [26–28]. The effect of random distribution
of fiber misalignments was taken into account by Barbero and his
colleagues [26,27] in their models of compressive strength of com-
posites. The analytical model of Barbero is based on the continuum
damage mechanics approach, and the pre-defined approximate for-
mula for the shear stress strain response of the matrix. However, the
analytical model developed by Barbero can not be used to investi-
gate the effect of different fiber arrangements, material laws of com-
ponents and other microstructural effects on the compressive
strength of composites. In order to solve this problem and to carry
out parametric studies of the effect of microstructures on the com-
pressive strength of composites, a computational model of compos-
ite with random fiber arrangement and random fiber misalignment
has been developed. The model and the computational experiments
based on this model are described below.

3. Statistical modelling of compressive damage

3.1. Multifiber model with random misalignments

In order to analyze the statistical effects in fiber kinking in com-
posites, a computational code for the computational analysis of
compression damage, based on the statistical model of fiber
composite, damage mechanics and fiber kinking condition by
Budiansky and Fleck, has been developed. The carbon fiber rein-
forced epoxy matrix was considered. The fibers are assumed to
be elastic, while the mechanical behavior of the epoxy matrix is
described by Ramberg-Osgood equation. It is assumed that the
fiber misalignment is a random value with Gaussian distribution.
Table 1
Material properties used in the simulations (for sample material, AS4/E7K8).

Composite Ma

Volume
content of
fibers (%)

Initial in plane/
composite shear
stiffness Glt, GPa [26]

Composite shear
strength su, MPa
[26]

Standard deviation of
fiber misalignments,
deg. [31]

You
mo
GPa

50 5354 157.5 1.15 3.7
For the analysis, a unit cell with a pre-defined amount of fibers is
generated in an interactive session. The fibers are randomly
arranged in the cell, using the RSA (random sequential absorption)
algorithm [2]. The misalignment angles are assigned to each fiber,
using random normal number generator (with Gaussian probability
distribution). The material properties used in the simulations are
shown in Table 1. Then, the unit cells were subject to axial loading
(or repeated loadings). For each fiber, the kinking condition is
checked, according to the Budiansky–Fleck kinking condition [12].

If one or several fibers kink, the stress is redistributed over
remaining fibers, thus, increasing the load on remaining fibers,
and the likelihood of their kinking.

3.2. Load redistribution after the fiber kinking

In order to model the load redistribution after the kinking of
one or few fibers, the following model was used. The damage
parameter is calculated as the amount of kinked fibers divided
by the total amount of fibers

D ¼ Mfail=M: ð1Þ

The kinked fibers are assumed to carry no more load [26], or (a
generalized version) to have reduced stiffness.

The averaged stress on the remaining intact fibers (after the
kinking of one or few fibers) is calculated on the basis of the ‘‘effec-
tive stress concept” of damage mechanics [2]:
r ¼ r0=ð1� DÞ; ð2Þ

where r0 is the stress on a fiber before the kinking of one or more
fibers. Further, the stresses on the fibers are redistributed depend-
ing on the distance between a kinked fiber and the considered
intact fiber, according to the power load sharing law [29,30]:

r / r�k; ð3Þ

where r – stress on a given fiber, r – distance between a failed and
the considered fiber, k – power coefficient. Here, k = 0 corresponds
to global, and k � 1 to local load sharing rules [2].

In order to determine the stress concentration factor for intact
fibers after failure of one or several fibers, we used the following
reasoning. Presenting the formula (3) in the form

r ¼ ar�k;

where a – proportionality coefficient, and determining the total
load on all fibers before and after fiber failure, we can obtain:

a ¼ r0MP
Mr�k

; ð4Þ

where M – amount of fibers, rij – distance between fibers i and j. Thus,
the stress on i-th fiber after kinking of j-th fiber can be determined as

ri ¼
ravM

ð1� DÞ
P

Mr�k
r�k

ij ; ð5Þ

Here rav – averaged stress on the fibers (before the fiber
kinking), rav/(1�D) – averaged stress on the fibers (after the fiber
kinking). Formula (5) was introduced in our program in order to
take into account the load redistribution on fibers.
trix Fiber

ng
dulus,

[26,34]

Poisson
ratio
[26,34]

Power coefficient in
Ramberg–Osgood
relationship [33]

Ny, in Ramberg–
Osgood
relationship, MPa
[33]

Young
modulus,
GPa [32]

9 0.37 3 35 276
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Further, two scenarios of the load redistribution after the fiber
kinking were considered, depending on the ‘‘rate” of the load redis-
tribution: ‘‘quick” loading (when the fibers are loaded, and fail
independently, and the load redistribution takes place only at the
next loading), and ‘‘slow” loading (after a fiber is failed, the stress
on the remaining fibers increases instantly according to the ‘‘effec-
tive stress concept” and ‘‘load sharing rule”, and so on for all the
fibers which fail successively one after another). In the first case
(‘‘quick” loading), a jth fiber does not ‘‘know” that the ith fiber
failed, until the next cycle of loading. Only in the next cycle, the
load is redistributed over remaining fibers. In the latter case, the
fibers kink one after another, depending on misalignment of each
fiber. Thus, the ‘‘slow” loading leads to autocatalytic fiber kinking,
caused not by the increase of applied load, but rather by the load
redistribution after the fiber begin to kink.

4. Computational experiments: static loading

In this section, we seek to analyze the effect of microstructural
parameters of the composite (variability of misalignments, fiber
clustering, matrix properties) on the damage evolution under static
compressive loading.

4.1. Load sharing effect: ‘‘quick” versus ‘‘slow” loading of composite

Let us consider the effect of load sharing rule, and the ‘‘velocity”
of the load redistribution on the damage evolution in composites.
Following [29,30], we assume that the load sharing rule can be
approximated by the power law (3).

In order to analyze the effect of power coefficient in the Eq. (3)
on the damage growth in the composite, a series of damage simu-
lations for the unit cells with 500 fibers and different values of
power coefficients k were carried out. Fig. 1 shows the damage
plotted versus applied stress for the different values of power coef-
ficient in the loading sharing law, for the ‘‘slow” loading case. It can
be seen that the formation of kind bands or kinking of sufficient
fraction of fibers cannot be achieved even at very high loads in
the case, if the load from failed fiber is distributed only to nearest
neighbors (k > 5).

For the case of ‘‘quick” loading, the power coefficient of the load
sharing equation does not influence the damage evolution at the
first cycle of loading. However, it does influence the damage at
the repeated loadings.

Fig. 2 shows the damage plotted versus the power coefficient of
the load sharing equation, for the 1st and 2nd loading.

From this analysis one can see that the load sharing rule has a
strong influence on the damage evolution in composites. The glo-
bal load sharing leads to quicker damage growth. Thus, if we can
localize the damage evolution (for instance, by placing weak fibers
inside a group of strong fibers), we can delay the destruction of
composite.
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Fig. 1. Damage plotted versus applied stress for the different values of power in the
loading sharing law (‘‘slow” loading).
As noted by Zhou and Wagner [35], the local effect of fiber
breaks on nearest neighbors decreases when matrix/fiber interface
begins to debond, and when this debonding grows. Thus, the avail-
ability of interface debonding leads to the more global load distri-
bution after fiber kinking, and, therefore, to the quicker damage
growth.

For the subsequent simulations, we need to estimate the value
of the power coefficient for the case of undamaged interface.
According to the experiments carried out at the Risø National Lab-
oratory for Sustainable Energy, the compressive strength of car-
bon/epoxy composite (65% carbon) is of the order of 1350 MPa
[36]. Making the correction on the volume content of fibers (65%/
50%), we obtain the estimation of the compressive strength in this
case as 1040 MPa. Similar results have been obtained in [31]
(1000–1200 MPa). Comparing this value with Fig. 1, one can see
that this critical stress corresponds to the value k = �2. It is of
interest that the value k = �2 was referred to in [30] as well. This
value of k will be used in our further simulations.

In order to compare the damage growth curves for the ‘‘quick”
and ‘‘slow” loadings, we carried out simulations for two cases.
Fig. 3 shows the damage in the composite, calculated by formula
(1) and plotted versus the stress on a fiber for the cases of ‘‘quick”
and ‘‘slow” loadings. The volume content of fibers was taken 50%,
and there were 500 fibers in the model. The power coefficient k
in the Eq. (3) was taken to be �2.

4.2. Effect of the variability of fiber misalignment on the damage in the
composite

In order to analyze the effect of the variability of the fiber mis-
alignments on the damage in the composite, we carried out a series
of simulations of compressive damage for unit cells with different
variabilities of fiber misalignments. The standard deviation of the
normal distribution of fiber misalignments was varied from 0.5�
to 2.0�. The calculations were made for the case of 500 fibers,
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Fig. 3. Damage in the composite versus the stress on a fiber: ‘‘quick” and ‘‘slow”
loading, vc = 50%, M = 500, k = 2.
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Fig. 6. Distribution of failed fibers in the case of clustered and random homoge-
neous fiber arrangement. The case of 1000 fibers, 10 clusters, vc = 20%.
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two levels of applied stresses (1000 MPa and 1500 MPa), and the
volume content of carbon fibers 50%. The loading was applied in
the ‘‘quick” regime.

Fig. 4 shows the damage in the composite plotted versus the
standard deviation of the normal distribution of fiber misalign-
ments. As expected, the higher fiber misalignment leads to the
quicker damage and stiffness loss of the composite.

4.3. Effect of fiber clustering on the kinking

The conclusion drawn above about the positive effect of the
localized load sharing on the damage evolution could lead us to
the assumption that the clustered arrangement of fiber (or so
called fiber bundles) should have a positive effect on the composite
strength. In order to verify this assumption, we carried out corre-
sponding numerical experiments.

The clustered fiber arrangement was generated automatically,
following the algorithm described in [2,37,38]. The number of clus-
ters was pre-defined. Then, the centers of clusters were arranged in
such a way that the distance between them is equal or more than
Fig. 5. Distribution of failed fibers in the case of clustered and random homoge-
neous fiber arrangement. The case of 100 fibers, 5 clusters, vc = 20%.
the double cell size divided by the amount of clusters. The fiber
centers were arranged at random, normally distributed distances
from the cluster centers.

The models with random and clustered arrangements of fibers
were subject to loadings (‘‘quick” loading scheme). In order to
make the clustering effect better visible, we considered the com-
posite with 20% volume content of fibers.

In the simulations, it was observed that the fiber clustering has
no effect on the damage at the first ‘‘quick” loading. However, at
the second ‘‘quick” loading, the composites with clustered fiber
arrangements demonstrated sufficiently higher damage.

Figs. 5 and 6 show the distributions of failed fibers in the cases
of clustered and random homogeneous fiber arrangement, for the
N = 100 (5 clusters) and N = 500 (10 clusters), after the second
loading cycle. The applied load was 1200 MPa.

Fig. 7 shows the damage plotted versus applied stress, for the
clustered and random homogeneous fiber arrangements, with
500 fibers, for 1st and 2nd loading cycles.

On the basis of the analysis, one can conclude that the clustered
fiber arrangement leads to the quicker failure of composite, due to
the effect of the load redistribution.

While there might be no difference between the clustered and
homogeneous fiber arrangement if the material is no pre-damaged
and is loaded quickly, the clustered arrangement leads to the much
quicker failure of fibers at the second loading (or if the material is
pre-damaged). For instance, at the compressive stress 1500 MPa,
the damage in composite with clustered fibers is 32.5% higher than
in the composite with homogeneously arranged fibers.

If fibers are clustered, failure of one fiber leads to the quick fail-
ure of all fibers in the cluster, as soon as the load redistribution
effect takes place.

Let us compare these results with other results on the effect of
fiber clustering for similar cases [2,39,40]. Sørensen and Talreja
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[39] observed that the fiber clustering leads to the higher compres-
sive stresses in fibers. Segurado et al. [40] observed the increase in
the reinforcement damage with increasing the reinforcement clus-
tering in the composite.

4.4. Effect of the hardening behaviour of the matrix

Here, the effect of the hardening behavior of matrix on the dam-
age in the composite is considered. The power coefficient n in the
Ramberg–Osgood formula for the matrix hardening behavior was
varied from 0 to 11. The results of damage in the composite are
plotted versus the power coefficient n in Fig. 8.

From the Figure can be seen that the fiber kinking behaviour is
influenced by the hardening law of the matrix: fiber kinking takes
place only if n > 1. The density of kinked fibers is highest at n = 2–3
and is reduced up to 12% when n increases further.

4.5. Formation of the kink band

A cluster of adjacent, buckled/kinked fibers can be considered as
a kink band. Fig. 9 shows the scheme of the formation of kink band
as a percolation cluster from bucked fibers (top view). In order to
determine whether the buckled fibers form an infinite, spanning
cluster in a given section of the cell, the methods of the continuum
percolation theory (Swiss cheese model) were used. The arrays of
the coordinates of fibers, marked as kinked or intact, are given to
the percolation subroutine. The fibers are considered as ‘‘adjacent”
and forming a cluster, if the distance between their axes is no more
than 3 fiber radii. The linear size of the kink band is determined as
the distance between two most distant kinked fibers in the fiber
cluster.
Fig. 9. Scheme (top view): formation of kink band as an percolation cluster from
bucked fibers.
Fig. 10 shows the length of the kink band plotted versus the
applied stress. The length of king band is normalized over the fiber
diameter, which is taken 10 lm here.

The kink band begins to form at the load 500 MPa, and grows
almost linearly in the stress range between 500 and 1500 MPa.
After 1700 MPa, some slow down of the band growth is observed.

4.6. Touching fibers: critical volume content of fibers

Using the developed program code, we sought to analyze the
effect of the volume content of fibers on the amount of touching
fibers. Touching fibers are a quite common defect in composites,
and are very dangerous for the fatigue strength of the materials.
In the model, developed in Section 3, we assumed that the fibers
can not contact, and set the minimum distance between two adja-
cent fibers to be 1.005r (r – radius of fiber). In this subsection, we
replace this condition by the condition that the minimum distance
between the axes of adjacent fibers is no less than 1.98 of the fiber
diameter (thus, assuming that the 0.01 of fiber radius is taken by
its surface roughness and interphases). Using this assumption,
we calculated how many fibers touch one another at a given vol-
ume content of fibers. The condition that two adjacent fibers touch
one another is formulated as a condition that the distance between
axes is between 1.98 and 2.02 of the fiber diameter.

Fig. 11 shows the amount of touching fibers divided by the total
amount of fibers plotted as a function of the fiber volume content.

One can see that, at the volume content approaching 60%, the
density of touching fibers begins to increase quickly (the curve
begins to grow almost vertically). Thus, the volume content of
the order of 60% might be a critical level, at which the positive
effect of strong reinforcement is balanced and eventually negated
by the effect of the touching fiber defects. This conclusion is con-
firmed by experimental observations which showed that the fiber
volume content of a composite 56–57% is a critical value, after
which the composite might have rather high strength and stiffness,
but very low fatigue resistance.
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5. Computational experiments: cyclic loading

In this section, we seek to generalize the statistical model of the
compressive strength of composites for the cyclic loading. The
model is modified to take into account the truncated fiber
misalignment distribution, variation of fiber misalignment and
progressive matrix degradation. Then, the cyclic loadings with con-
stant, random and increasing/decreasing loading are simulated,
and the effect of the loading regime on the damage evolution is
analyzed.

5.1. Modification of the model

The simplest way to generalize the static model above to the
case of cyclic loading is to apply repeated static loadings. In order
to compare the theoretical S–N curve with the experimental
results, some additional corrections have to be introduced into
the model. So, the ideal Gaussian distribution of fiber misalign-
ments means that 2% of fibers have a misalignment more than five
degrees. Apparently, this is not realistic, given the technology of
fiber placement. Thus, we use the truncated normal distribution
to describe the misalignment distribution in composite. In our fur-
ther simulations, the distribution of fiber misalignments follows
the normal probability law between �3o and 3o.

Fig. 12 shows the comparison of experimental [36] and theoret-
ical S–N curves of carbon/epoxy composites. The 100 levels of
applied stresses (constant in each cycle) were considered. For each
cycle, a new unit cell (with 500 fibers and volume content 50%)
was generated. Each cyclic loading simulation run up to 15000
cycles for each considered stress level. The simulation was stopped,
if the damage in the composite exceeded 0.3.

It can be seen that the stress–lifetime curve, obtained in the
simulations, does correspond well to the experimental results.

5.2. Random cyclic loading: effect of load variation on the damage
evolution

The repeated constant loading is in fact a theoretical idealiza-
tion. In reality, cyclic loading contain always some random compo-
nents. In this subsection, the effect of the random variations of
applied loadings on the damage evolution and fatigue life in the
composite are studied.

The applied stress in each loading was random value. This value
follows the Gaussian probability distribution law, and is deter-
mined with the use of the random number generator. Three levels
of the standard deviation of the applied stress were considered: 50,
100 and 200 MPa. Fig. 13 shows the S–N curves (given as trend
lines obtained for a number of points) for three levels of the stress
variation, and for the case of the constant applied stress.

One can see that the random variations of applied loading lead to
the shortening of the fatigue life of composite. For instance, the
stresses, at which the lifetime of composite exceeds 15000 cycles,
are 797 MPa for the case of constant stress in each cycle, 594, 406
and 117 MPa for the cases of the random loadings with standard
deviations of 50, 100 and 200 MPa, respectively. Thus, even small
random components of loading lead to rather large reductions of
the lifetime.

Next, we consider the effect of the increasing and decreasing
stress during the cyclic loading. We considered several cases: at each
stress level, the applied stress is varied (linearly decreased or
increased) during the cycling. The average stress over the cycling
was the same in all the considered cases. The stress in j-th loading
was determined by linear interpolation between the stress in the
first loading of the cycling [which was given as (1�q)�ro] and the
stress in the last loading of cycle, given as (1+q)�ro. Here, q – some
value between�1 and 1, ro is the average stress in the cycle. The for-
mula for determination of the applied stress in the i-th cycle was:

ri ¼ 2qro
j� 1
N � 1

� �
þ 1� q; ð6Þ

If q > 0, the stress increases over the cycling, and if q < 0, the
stress decreases.

Fig. 14 shows the stress corresponding to the lifetime 15000
cycles plotted as a function of the increasing/decreasing of the
stress during cycling.

One can see that the increasing stress during the cycling leads
to the higher lifetime at the high stresses, but lower lifetime at
the low stress, as compared to the case of the constant stress load-
ing. The decreasing stress during cycling results in that the com-
posite the lower stresses ensure the lifetime.

5.3. Generalization for the low cycle fatigue and matrix degradation

As can be seen in Fig. 12, the S–N-curve obtained in the simula-
tions is L-shaped: the material either fails during the first 10 cycles,



Fig. 15. Schema: Degradation of the composite matrix leading to the reduction of shear modulus of the matrix and to the fiber kinking.
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or its lifetime is very high. In many cases, the S–N curves and espe-
cially the transition between the static failure and high cycle
fatigue are much smoother.

In order to generalize our model for this case, some additional
modifications have to be introduced into the model. Apparently,
other damage mechanisms than the progressive fiber kinking
(when a few fibers kink in each loading cycle) should be responsi-
ble for the smooth transition between the very low cycle fatigue
and high cycle fatigue: as soon as the fiber kinking begins, the
remaining lifetime is relatively short, due to the redistribution
and increase of loading on remaining fibers.

We assume that the progressive damage in the matrix and/or on
the fiber/matrix interface is responsible for the slow degradation of
the composite properties during the undercritical loadings of the
composite. This matrix damage leads ultimately to the begin of
kinking and formation of the kink band. Fig. 15 shows the model
schematically. In this model, the nanoscale degradation of polymer
matrix due to the cyclic loading leads to the reduction of the shear
modulus of matrix, and, ultimately, to the fiber kinking according
to the Budiansky–Fleck condition [12] (for the fibers which do
not kink according to the condition as long as the matrix is intact).

As a first approximation, the following degradation rule for the
matrix was used:

G ¼ G0ð1� DmatrÞ

Dmatr ¼
X

j

ra

g

� �p ð7Þ

where Dmatr – (anisotropic) damage parameter in the matrix, G0 –
shear modulus of the intact matrix, ra – applied stress, j – amount
of cycles, g and p – fitting constants.

Fig. 16 shows the S–N curves for three cases: L-shaped S-N
curve (no matrix degradation), and the curves for the cases of
p = 1 and g = 5 � 105 and g = 106. The simulations were carried
out up to 10,000 cycles. One can see that this model allows to
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Fig. 16. Example S–N curves of composite: L-shaped S–N curve (no matrix
degradation), and the curves for the cases of p = 1 and g = 5 � 105 and g = 106.
obtain more realistic, smooth transition between low cycle fatigue
and high cycle fatigue. However, the problems of the correct deter-
mination of the parameters p and q, as well as the improvement of
the oversimplified model (7) remain unsolved, and represent a
subject of our next study.

5.4. Increasing of fiber misalignment at the repeated loadings

If the composite is subject to repeated compressive loading
(even without by inflicting damage on the fibers and matrix) and
some part of deformation is irreversible, it can lead to the changes
of microstructure. Namely, the distribution of fiber misalignments
can change. Even if a very small irreversible deformation of com-
posite takes place, the misalignment angle can be increased by a
few tenth of degrees after many cyclic loading. Given that the
smallest variations of fiber misalignment play an important role
in the kinking of the fibers, even such small growth of misalign-
ment angles may influence the fatigue behaviour of composite.

Let us consider the effect of the compressive loading with irre-
versible deformation components on the fiber misalignment distri-
bution. Fig. 17 shows a scheme of the increase of the fiber
misalignment as a result of compressive loading, causing irrevers-
ible deformations. Next, we check that the variability (standard
deviation) of their misalignment angles increases under such con-
ditions as well (and not only the angle of each fiber misalignment).
From the geometrical reasoning, the misalignment angle of each
fiber after the fiber is subject to compressive load and irreversibly
deformed is

a1 ¼ arcsin½sinða0Þ � e�
1

Fig. 17. Schema: Increasing the fiber misalignment as a result of repeated
compressive loadings, causing irreversible deformations.
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where a0 – initial misalignment angle, e – irreversible deformation.
We calculated the standard deviation of misalignment angles of an
array of 100 fibers as a function of initial angles (standard deviation
1.125 degrees) and the irreversible deformation of the cell. Fig. 18
shows the increase of the variability (standard deviation of Gauss-
ian distribution) of fiber misalignments with increasing irreversible
deformation of the material. One can conclude that the variability of
fiber misalignment can increase if the material is subject to
repeated compressive loading, causing irreversible deformation of
the composite. The effect of the changing misalignment distribution
after repeated loading can influence the compressive fatigue behav-
iour of composites. The experimental verification of the results is
under way now.
6. Conclusions

A statistical computational model of compressive loading of
fiber reinforced composite with randomly distributed misalign-
ments of fibers has been developed. Using this model, a series
of computational experiments seeking to analyze the effect of
composite microstructures on the compressive and fatigue
strength was carried out. The following conclusions could be
drawn from the simulations:

� The load sharing rule has a strong influence on the damage
evolution in composites. The global load sharing leads to
quicker damage growth. Thus, if we can localize the damage
evolution (for instance, by placing weak fibers inside a group
of strong fibers), we can delay the destruction of composite.
Given the effect of the interface debonding on the load shar-
ing [35], one can conclude that the availability and growth of
interface debonding leads to the more homogeneous, ulti-
mately global load distribution after fiber kinking, and, there-
fore, to the quicker damage growth.

� It was demonstrated that, the higher variability of fiber mis-
alignments leads to the greater damage and stiffness loss in
composites. An assumption is formulated that the variability
of fiber misalignments can increase when the material is sub-
ject to repeated compressive loading, causing irreversible
deformation of the composite.

� The clustered fiber arrangement leads to the failure of fibers
under lower load. If fibers are clustered, failure of one fiber leads
to the quick failure of all fibers in the cluster. For instance, at the
compressive stress 1500 MPa, the damage in composite with
clustered fibers is 32.5% higher than in the composite with
homogeneously arranged fibers.

� The static compressive loading model was generalized to the case
of cyclic loading, with constant, random and increasing/decreas-
ing applied stresses in each cyclic loading case. It was shown that
the random variations of applied loading lead to the shortening of
the fatigue life of composite. Even small random components of
loading lead to sufficient reduction of the lifetime.
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