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Abstract: This document was prepared in the frame of Task 3.3 “Damage Tolerant Design Concept” of Work-
Package WP3 “Rotor Structure and Materials” of the UPWIND project. Numerical procedures for determining the 
strength of a composite laminate, using various failure criteria, by taking into account the stochastic nature of 
anisotropic material properties are in detail described. The procedures were developed with the scope to form the 
base for methodologies that will be built up within the UPWIND project for quantifying the blade design reliability. 
Specifically, the Edgeworth Expansion Technique and the First Order Reliability Method are applied for the 
reliability estimation of composite material laminates. Results are compared with simulation predictions of the 
Monte Carlo method. Results by the Edgeworth Expansion Technique were found in good agreement with the 
respective ones from the other methods. Additionally, the Edgeworth Expansion Technique has a number of 
advantages compared to the First Order Reliability Method and the Monte Carlo simulation, since it does not 
involve iterative solutions for the reliability estimation. This makes the method attractive for application during the 
design of wind turbine rotor blades, where a probabilistic approach of the problem is expected to offer new 
potential in the direction of optimized material use.    
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1. Introduction 

For the estimation of the reliability of a structure statistical or probabilistic calculus is employed. 
The probabilistic methods are usually applied to answer to two basic questions: What is the 
probability density function of the system response? Or alternatively and a little bit more 
concentrated on the actual problem: What is the probability the system response to surpass a 
specific critical value? From the structural analysis and the design based on reliability view point 
the second approach is more usual, since the engineers dealing with the analysis of structures 
are also responsible for the description of the probability of failure of the system relative to a 
group of design norms and specifications.  

According to ISO 2394 [1] during the design the behavior of the whole structure or a part of it 
should be described in terms of a group of limit cases, out of which the structure does not 
satisfy the design specifications. The term failure is therefore, used with the general meaning of 
the word and states the shortcoming of the structure to satisfy a specific criterion of a limit state, 
which could be (or not) the global failure of the structure.  

Having accepted the division of the structural behavior in a failure state and a safe state (or a 
state of no failure) we can then have a closer look at the methods which can be used for the 
estimation of the probability of each state. A reliability estimation method, in the strict sense is a 
method for the estimation of the failure probability, PF, of a system. It is noted that reliability, PR 
is the complementary probability of the failure probability. That is: 

PR = 1 - PF 

For the calculation of the failure probability a number of steps should be taken. First of all the 
basic variables of the system should be defined, such as the thermo-mechanical material 
properties, the geometry of the structure, the ambient conditions during operation (temperature, 
relative humidity) and the external loading conditions. The combination of the geometry and the 
material properties defines the resistance of the structure, or in the particular case studied the 
strength of the system. The variables describing the characteristics of the resistance/strength 
are called the design variables. Some of them (if not all) have a stochastic nature. The definition 
of the basic variables means, therefore, the selection of the probability density functions and the 
estimation of the statistical parameters of the distributions, in case they are characterized as 
stochastic, whether this is the result of a natural variation or the result of the incomplete 
knowledge we have of them. Both uncertainty sources, that is those of the external parameters 
and those of the internal are grouped into a generalized vector of basic variables, X = (x1, x2,… 
xN). The variations of those variables may be time dependent. In this study, however, the 
analysis is limited to those states, where the uncertainties can be defined independent of time. 
The response of the system under a particular value of the vector is denoted as G(X). 

After having defined the basic variables, a critical point is assumed to exist on the system 
response, resulting to the division of the system parameter space in two subspaces: The Ω 
space where the combination of the parameters leads to a non acceptable or a non safe 
response and the Ω’ space where the system response is acceptable. The surface separating 
these two domains is called limit state surface or limit state function. The probability of failure of 
the system is defined by: 

( )∫∫ ∫
Ω

= XXX df...Pf        Eq. 1 

Where fX(X) is the joint probability density function. Apart from some simple failure functions and 
random variables following the Normal distribution, the integral of the joint probability density 
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function is difficult to obtain analytically. This is also the case for the failure function of a 
composite material lamina under general in-plane state of stress. Thus, for the estimation of the 
failure probability approximating methods must be used. In the following sections some of those 
methods are described, with emphasis on their strengths and weaknesses on their application 
during the design of composite material structures.  

1.1 Classification of reliability methods 

The variety of idealizations of the reliability models and the multitude of ways that these 
idealizations can be combined in order to fit to a specific design problem makes the 
classification of these models necessary. Structural reliability models can be classified as to the 
extent of information available and used for the structural problem. Four such main levels could 
be identified, although this classification is not limited [2].  

Level I: The reliability methods that use only one “characteristic” value for each parameter are 
called level 1. This classification includes the design methodologies that employ the 
characteristic values of the parameters and partial safety factors. 

Level II: The methods that take advantage of two values for each parameter, usually the mean 
(average) value and the standard deviation and which include a measure of the correlation 
between the variables, usually the covariance, are called methods of level II. The reliability 
index methods, which will be presented in following sections, are classified under this category. 
These are structural reliability analysis methods which employ safety checks on a pre-selected 
point (or points) on the failure surface, that is, the proper limit function. 

Level III: The reliability methods that use the failure probability as a measure and that require 
knowledge of the joint probability distribution of all stochastic parameters are called level III 
methods. These methods are purely based on the statistical analysis during which the safety 
checks are performed for the whole structural system by the simultaneous use of the probability 
distributions of the problem variables.  

Level IV: Finally a reliability method that compares a candidate structural design with a 
reference structural design according to economic analysis principles from an engineering point 
of view, taking into account the uncertainties involved including the advantages and 
disadvantages of the manufacturing, the maintenance and the repair, the consequences of 
failure, the interest rates, etc. is called method of level IV. Such methods are suitable for 
structures that are of highest economic importance and the possibility of a life loss, injury and 
other environmental or not impacts should be kept to a minimum. 

The type I approach is the best case for use by engineers for the structural design, but is not 
that advanced, so as to be applicable to all cases. The method does not require the exact 
estimation of the value of the failure probability, since a specific limit state is considered to be 
safe if the proper safety factors are not exceeded. A list of such safety factors is given in design 
codes for cases that have been already analysed. The problem is that the values of these 
safety factors for the requested reliability region of structural elements should be first made 
available through a reliability analysis performed either by a type II method or by a type III.  

The type III method is in practice a pure mathematical method, which should be probably used 
for the analysis of special structures where the reliability level is of outmost importance or in 
cases where it is really necessary to optimize the structure.  

The type II method is usually called reliability index method, the mathematics involved are 
rather simple and it is generally accepted that this method has the potential to be used either for 
the determination of the proper partial safety factors for the type I method or to be used directly 
during the design. 
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The classification for the type II and III methods can also be conducted based on the form of the 
underlying failure function, since for the reliability analysis of a structure the mathematical 
definition of the failure function is required as a first step. Moreover, the modelling of the failure 
function should be conducted in such a way so that the safe (and acceptable) operational 
region is clearly distinguished by the non acceptable region. Therefore, depending on the level 
of description applied for the modelling of the uncertainty the estimation methods can be 
classified into three categories: a) Random variables models, b) random process models and c) 
random field models [3]. 

1.1.1 Random variables models  

The random variables models describe reliability problems, which are characterized by the 
failure function G(X), where G is the failure function and X the set of the basic random 
variables. The failure is defined by convention as the event [G(X) ≤ 0], while the event [G(X) ≥0] 
implies the safe state. The probability of failure is defined as: 

( )[ ] ( )
( )∫ ≤

=≤=
0xG xF dxxf0XGPP       Eq. 2 

Where fX(x) is the joint probability density function of the variables of X, which are independent 
of time. 

Under these conditions, there are two basic categories of probability methods that can be 
applied. The first category includes a large group of random sampling methods, such as the 
Monte Carlo, or importance sampling techniques. These involve the random selection of 
observations of each parameter xi of the system according to the probability function of the 
variable and these values are in turn inserted in the response function of the system G(X). The 
second category of reliability methods is characterised by the use of analytical techniques for 
the estimation of a specific point in the design space that can be correlated, at least 
approximately, to the probability of failure of the system. A review of such methods is given in 
[4]. 

In this work the analysis is limited to models of random variables, that is, it is considered that 
the random variables involved in the problem are independent of time and space. The methods 
that can be employed will be extensively described in latter sections of the current document.  

1.1.2 Random process reliability models 

In this case the problem is defined by the measure ( )( )tY,XGmin
Tt∈

, where G is a failure function, 

X the set of random variables, Y(t) a set of random processes with t indicating the time and T a 
reference period, typically equal to the life of the structure. The probability of failure is in general 
the probability of first crossing. In the simplest case the failure surface in the Y space is 
deterministic and independent of time [3]. 

Basic principles of the problem are given in [5]. Random process models have been applied on 
composite material related problems by [6] among others, where the problem of composite 
material failure under a monotonically increasing random loading is examined. In another case, 
in [7], a deterministic time dependent problem is extended to account for the random applied 
loads (modelled as random processes) and the random material properties of an anisotropic 
viscoelastic medium to predict the initiation of delamination.  
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1.1.3 Random field reliability models 

A random field reliability model is described by the function G(X, Y(t), Z(q, t)), where X is a set 
of random variables, Y(t) a set of time dependent random variables and Z(q, t) is a set of 
random variables dependent on the position on the field, q, where q could for example 
represent the coordinates of the position, and the time, t. Random fields are ideal for modelling 
variation in space, as in the case of material properties or the variation of distributed loads on a 
structure. An overview of the basic underlying principles of such problems is presented in [8]. 
Random fields have been used for modelling with stochastic finite elements the material 
properties of an element or for the nodal forces, as described in [9] among others. 

Models of random fields, independent of time have been applied in composite materials related 
problems, especially for the study of their failure in the michromechanical level [10]. On the 
macromechanical level, applications of random fields are described in [11], where the strength 
of the material is modelled as a random field and in [12], where apart from the strength also the 
elastic material properties are described as random field variables. For both cases the 
prediction of the structural response is performed through the Monte Carlo method. Additionally, 
in [13] the elastic material properties and the material density are modelled as random fields in 
order to estimate the response of a composite material plate in free vibration.  

A combination of random process and random field modelling in problems of composite 
materials is applied for example in [14], where the method applied in [6] is extended to account 
for the stochastic nature of the material elastic and strength properties, by use of random field 
models so as to predict the failure propagation up to ultimate fracture. Similar application of 
random processes and fields can be also found in [15]. 
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2. Failure function 

In the case of composite material structures and in particular for wind turbine rotor blades, for 
the modelling of the failure of the structural element under general in-plane static stress 
condition, the engineer faces a multitude of options regarding the expression of failure, which 
inevitably have a different grade of accuracy. From the various theories that have been 
developed over the years, some find wide acceptance and application during the design of 
structural elements, while for some others there is not yet experimental proof, or need a better 
understanding of the underlying problem. Even when considering the results and 
recommendations of the world-wide failure exercise [16] the designer is advised to implement 
two theories together to arrive at optimum results regarding failure prediction of unidirectional 
laminae under combined loading [16], while for the prediction of final strength of multidirectional 
laminates it was found that none of the 19 theoretical approaches considered in the failure 
exercise could claim very great accuracy [16]. In general the models regarding the failure of a 
composite material layer can be divided in micromechanical models, that is models that are 
used for the failure prediction of the layer starting on the fibre-matrix level and on 
macromechanical models, that are usually based on the failure description of the medium 
without getting into details on the fracture at the fibre-matrix level [17].  

The failure phenomena that are developed on the microscopic level are rather complex, which 
in turn lead to models of equal complexity and of disputable accuracy and as a result are 
difficult to apply during the design of a structure [18]. Even though there has been a swift 
progress on the subject over the last years, the impression that models based on 
micromechanics are not suitable for incorporation on design procedures still exists [16]. A 
comprehensive review of the failure prediction methods for composite materials, based on 
micromechanics and damage evolution theories using probability theories is presented in [19]. 
A general conclusion of this rigorous review is that in many cases the developed theories are 
not verified through experimental results. This can be attributed to three main reasons: The 
wide field of materials in combination with different experimental techniques that are used for 
the comparison between theoretical and experimental results, the different manufacturing 
methods that can mask inherent trends of the results, as well as the difficulties in accurately 
determining the parameters used during the theoretical analysis, as for example the correlation 
length of a microcrack on the stress field. These three causes in combination with the lack of 
data for the composite material properties make the verification of a general theory rather 
difficult. Moreover, it is noted that since these estimation methods are mathematically mature, 
their application is usually cumbersome for the engineer. Further improvement of the 
methodologies will certainly lead to even more mathematically complex expressions, without 
necessarily present a solution to the problem of failure estimation [19].  

On the other hand, considering the macromechanical approach of the problem, the failure 
criteria can be divided in parametric and phenomenological. The former are based on the 
approximation of experimental failure data through parametric equations, using geometrical 
criteria without constraints due to the phenomena that are taking place, such as the non-linear 
behaviour of the material [20]. The purpose of these methods is a more accurate modelling of 
experimental results, especially in cases where the use of phenomenological failure criteria fail. 
Nevertheless, such an approach requires a large number of test data covering the whole space 
of stress state to approach the main failure space accurately, while at the same time their 
application is not much simple than the other methods [21]. 

The phenomenological failure criteria are combining elements from the micromechanical failure 
analysis in a function (mathematical expression) that is applied for the failure prediction of 
composite material components rather straight forward. Consequently, based on the strength 
properties of the layer, however, without looking into the background of the failure mechanism, 
they find wide application in design problems of composite material structures, due to the fact 
that they are easily applicable, while having an acceptable level of experimental verification. 
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Nevertheless, also in this case, the differences between the various expressions of the failure 
conditions are several, since new forms of criteria are continuously developed, aiming at 
providing a sound explanation for the deviations of the past criteria on new experimental data. 
These criteria can be written as failure polynomial tensors [22] and include the maximum stress 
and maximum strain criteria. Especially these two criteria (maximum stress and maximum 
strain) fall in the failure conditions that neglect the stress (or strain) interaction terms. This fact 
in turn leads in some cases to the limitation of the criteria to effectively approach the failure 
state of composite materials. Nevertheless, both of them still find application, as for example in 
[23] where the failure of multilayered cylindrical specimens of [90/±45/0]s lamination sequence 
under internal pressure and axial tension is modelled. In most cases the failure criteria 
proposed are described in a quadratic form. Therefore, the maximum stress and maximum 
strain criteria present an additional drawback with respect to the ease of application, due to the 
third and fourth order terms that are incorporated in the failure function [22]. 

Consider the case of an off-axis unidirectional layer under general in-plane state of stress, as 
shown in Figure 1. 
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σs
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Figure 1 Coordinate system for an off-axis unidirectional layer 

The failure tensor polynomial is used in the quadratic form, which in the natural coordinate 
system of the material, i.e. on-axis, under a general in-plane state of stress can be written as 
[24]: 

01HH iijiij ≤−σ+σσ      i, j = 1, 2, 6   Eq. 3 

The diagonal terms of the failure tensors for a unidirectional (UD) fibre reinforced plastic (FRP) 
layer are given by: 

( ) 1
2111 XXH −=  ( ) 1

4322 XXH −=  2
566 XH −=  

1
2

1
11 XXH −− −=  1

4
1

32 XXH −− −=  
Eq. 4 

where the failure stress in tension and compression along the fiber direction and transversely to 
it, XT, XC, YT and YC, respectively, as well as the in-plane shear strength, S, will be denoted for 
easiness by: 

54C3T2C1T XS,XY,XY,XX,XX =====    Eq. 5 

The selection of the off-diagonal term, H12, leads to different phenomenological failure theories, 
with predictions that may have important differences, [25], [26]. The failure criterion in the form 
proposed by Tsai and Hahn (TH) [27] uses the following definition for the H12 term: 
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221112 HH
2
1H −=        Eq. 6 

Another, widely used expression for the off-diagonal term H12 is the following [28], [29]: 

2
H

H 11
12 −=        Eq. 7 

In an effort to improve the failure predictions, where experimental results especially on 
lamination sequences around 45° could not be approximated effectively using quadratic failure 
criteria, led to the investigation of third order criteria, as for example in [30] and [31]. In this off-
axis area the behavior of composite materials is usually non-linear. Thus, in [32] where the 
quadratic criterion was used with an off-diagonal term as in Eq. 7 and the non-linear material 
behavior was also taken into account the difference of the theoretical prediction from the 
experimental observations was substantially smaller.  

In a rather different approach of the limit state problem of a composite material layer, where the 
phenomena in the micromechanical level were also taken under consideration, in [33] and later 
in [18] suggestions for failure criteria which can discern between fiber breakage and matrix 
failure were conducted. According to these criteria, for the investigation of the failure of a layer 
under general in-plane stress condition two equations should be checked simultaneously. It 
should be noted that these kind of criteria are also recommended in guidelines for composite 
material structural design, as for example in VDI 2014 [34], where the other quadratic failure 
criteria are considered as insufficient, since these cannot distinguish between fiber or matrix 
failure. This condition is also noted in design guidelines applicable on wind turbine rotor blades, 
e.g. GL [35] and DNV [36].  

The variation of the experimental data which was observed, led to the estimation of the optimum 
angle between the fiber and the loading direction for the derivation of the coefficients that are 
applied on the failure functions, aiming at reducing the estimation uncertainty [37], [38]. On the 
other hand, the variation of the experimental results might lead to erroneous conclusions during 
the verification of the failure criteria [18].  

Under these conditions, while the stress analysis for composite material structures is performed 
with the highest possible accuracy, the engineer encounters difficulties in answering the 
ultimate question of whether or not the structure fails under these loading conditions, even in 
the deterministic case, since there are a variety of failure criteria, with rather important 
differences. It is for this reason that in the current work an investigation has been undertaken for 
the effect of the selection of the failure criterion on the prediction of the failure probability of a 
composite material. Nevertheless, the sensitivity of the probability estimation using various 
failure criteria, was kept to a minimum, since the discussion on the most appropriate failure 
criterion for composite materials is still open [16]. The criterion which is used as the basis for 
the analysis is the quadratic failure condition Tsai-Hahn (TH), as expressed by Eq. 3, with the 
off-diagonal term given in Eq. 6, or alternatively the Elliptic Paraboloid Failure Surface criterion 
(EPFS) with the off-diagonal term as presented in Eq. 7, while the failure function in tensorial 
form with X the vector of the failure stresses (X = [X1, X2, …, X5]T), is expressed by: 

( ) 01,K ≤−σ+σσ=σ hHX      Eq. 8 

where it is assumed that if ( ) 0,K <σX  the layer is in a safe state, that is no failure is 
anticipated, if ( ) 0,K =σX  it is assumed that the layer is at a failure state, while the condition  
( ) 0,K >σX  does not have a natural meaning since the failure of the layer has preceded.  
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For consistency with the definitions of the safe and failure state used in probabilistic methods 
the function G(X) is defined as: 

G(X) = -K(X)        Eq. 9 
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3. Reliability estimation methods 

3.1 Partial safety factors method 

The design values of the basic variables are denoted by Xid. These values can be written as: 
Xid = γiXic, where Xic is the characteristic value of the parameter Xi, while no summation is 
implied in this relation. The verification of the structure with respect to the limit state is 
performed inserting the design values and the dimensioning parameters in the failure function 
so as to confirm that: 

G(Xd) ≥ 0 

The characteristic values are usually the mean values, the 95% or 98% fractile for the loads and 
respectively the 5% or the 2% fractile for the strength properties. The partial safety factors are 
chosen, so as to be in the conservative side, that is, for example they are in general larger than 
unity for the loads and less than unity for the strength properties.  

In the case of the wind turbine blade design, the respective design codes and standards, e.g. 
GL [35] and IEC [39], use is being made of the characteristic value of the failure stresses, Rk. 
The characteristic value of the failure stress is defined as a specific fractile, usually the 5% of 
the probability function of the relevant material strength, that is, the value of the strength z(a) 
defined by: 

∫
∞−

===
)a(z

05.0a)]a(z[Fdx)x(f       Eq. 10 

where f(x) is the probability density function and F(x) the cumulative function of the underlying 
probability distribution which is followed by the failure stress of the material. It is usually 
assumed that the material strength follows the Normal distribution [40], [35], so that above 
relationship can be written as: 

∫
∞−

==Φ=φ
)a(z

05.0a)]a(z[dx)x(       Eq. 11 

where ( )xφ  and ( )xΦ  are the probability density function and the cumulative distribution, 

respectively, of the Normal distribution. For the standardized variable 
s

xR
z k −= , where x  and 

s are the mean value and the standard deviation of the corresponding property, respectively, 
the 5% fractile is (see also Figure 2): 

z(0.05) = -1.645   
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Figure 2  Definition of 5% fractile of the characteristic failure strength 

Therefore,  

s645.1xR k −=         Eq. 12 

That means that the 95% of the population is expected to have a strength value larger than this 
characteristic value, Rk, which is derived by the solution of the above relationship. 

However, to account for the fact that the mean value and the standard deviation of the 
population for the strength property have been estimated by a sample a confidence interval for 
an eventual lower mean value of the population than that found by the sample should also be 
used in the estimation of the characteristic strength value. The confidence interval selected is 
usually the 95% interval. The following relationship is valid for the lower bound of the mean 
value (assuming that the population follows Normal distribution): 

n
stxx 95.0L −=        Eq. 13 

where n is the number of specimens in the sample and t0.95 is the Student distribution with v =n-
1 degrees of freedom 95% fractile. For example the t0.95 for 10 test specimens in the sample is 
1.833, while for very large n, the Student distribution approaches the Normal distribution and 
t0.95 is 1.645. 

Thus, for example for a very large sample, the characteristic value, Rk, is determined through 
combination of Eq. 12 and Eq. 13 by following relationship, according to design codes 
specifications: 









+−=








+−==

n
645.1645.1sx

n

t
645.1sx)n,s%,95%,5(R)n,s,P,a(R 95.0

kk   Eq. 14 

where a is the requested fractile for the random strength property and P the confidence interval. 

Frequently, in some design codes a partial safety factor can be written as: 

iN2i1ii ...,,, γγγ=γ  
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where γi1 is selected for example to account for the consequences of failure, γi2 is selected to 
account for the uncertainty in the thermal treatment of the material, etc. 

The characteristic values, the confidence intervals, the partial safety factors, etc., that is all 
values that are prescribed by a safety design code, apart from the mathematical or physical 
constants, form the parameters of the standard. The selection of a set of numerical values for 
the code parameters is called code calibration. Many of the design codes applied have been at 
least adjusted employing reliability estimation methods of level II, while it should be reminded 
that the classification of the partial safety factors method is level I [2]. 

3.2 Monte Carlo Simulation 

The Monte Carlo simulation method is based on the iterative solution of the deterministic 
problem by generating for every repetition a probable value for each stochastic variable of the 
problem. In a problem involving stochastic variables, that follow a specific probability 
distribution, the Monte Carlo (MC) method comprises following steps: 

• Sample generation for each basic stochastic variable according to the corresponding 
probability distribution of each variable. 

• For each value of the samples solution of the deterministic problem and determination of 
the structural response. 

• Formation of the response sample by the result of all deterministic iterations and finally,  
• Statistical analysis of the response sample. 

For the problem of the estimation of the reliability of a structure the analysis is simplified, since it 
is enough to check at each repetition whether the structural element fails or not. Thus, the 
reliability of the element is given by: 

tot

S
R n

n
P =          Eq. 15 

where ns is the number of iterations during the simulation where the failure function took values 
less than 0 and therefore, no failure was attained for the element and ntot is the total number of 
iterations. A rule of thumb for the necessary iterations required so that the failure probability of 
the simulated structural systems is accurately predicted is 100/PF, where PF is the expected 
probability of failure [3]. It should be noted that for the use of the MC method a scrutinized 
search has been performed in the frame of the current work not only for the number of iterations 
required for the convergence of the method, but also for the random number generation 
algorithms employed.  

Due to the ease of application the MC method has been used several times in problems 
involving composite materials. For example, the MC method was the only used in [41] for the 
prediction of the failure probability of off-axis layers under uniaxial tension, where the strength 
properties have been modelled as stochastic parameters, while in [42] the MC method was 
applied for the estimation of the failure probability of every layer in a laminated plate under 
transverse load. In this latter case apart from the strength properties also the elastic properties, 
as well as the basic dimensions of the plate where considered as stochastic. Nevertheless, due 
to the high numerical effort, the MC method is not suitable for application on structures of 
complicated geometry, where the finite element model comprises a large number of elements. 
However, the method remains a valuable asset for the verification of methods newly developed 
for the prediction of reliability.   
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3.2.1 Statistical tests for the MC method verification 

Since a sample of values (responses) produced through the MC simulation is similar to a 
sample of experimental observations, the method could be regarded as a sampling method and 
therefore, the results are subject to statistical uncertainties. A solution with the MC method from 
a finite set of values is not accurate. Specifically, the estimated probability, which is the 
desirable output, could differ from simulation to simulation by changing only the input samples 
of the basic variables. The first step of the method, which is also the most important one with 
respect to the accuracy of the output, is based on a procedure by which series of numbers are 
generated. The procedure involves the use of a pseudo-random number generator. In this work 
the subroutines used for the generation of the pseudo-random numbers are described in [43]. 
Moreover, the sample used during the simulation could be adequate for a specific application, 
but could be insufficient for another. For the verification of the suitability of the number 
generators there are several statistical tests. The good random number generators should pass 
all these tests, otherwise the user should be aware of in which of these tests the generator is 
rejected [43]. It should be also noted, that a specific algorithm should be tested together with 
the pseudo-number generator employed independently of the number of tests that the 
generator passes [44]. 

Since the MC method is used in the current work as a base for the comparison of results 
attained by other methods an extensive verification of the soundness of the method application 
has been performed. To this, it is noted that generally with respect to the verification of the MC 
method there are two views in the literature; that of the mathematicians [45], [44], [46], [47] and 
that of the engineers [48] and [3]. The former perform tests starting from the base of the 
method, that is from the method of random numbers generation, while the latter use the 
method, often omitting to test the samples that are being used as an input during the simulation 
and are restrained to verifying the convergence and the accuracy of the prediction.  

To be more specific, for the verification of the application of the simulation from the 
mathematical point of view it is necessary to test the employed algorithm starting from the 
random number generator to the final output. To this end, not only theoretical tests for the 
soundness of the generator are necessary, but also empirical tests for the samples of the 
pseudo-random numbers that are generated, tests for the transformation of samples used from 
the uniform distribution to the distribution of interest and finally, tests for the application of the 
method. On the contrary, from the engineering point of view, only a test for the convergence of 
the method is necessary, namely, the good choice of the sample size and the minimization as 
far as possible of the standard deviation of the prediction. 

Apart from that, during the applications, as these encountered in the current work, it is rare to 
need a sample generation for only one variable. Usually the samples of a generator are split 
into subgroups, so as to form samples for more than one variable. This procedure, however, 
results in the alteration of the behaviour of the generator sample regarding randomness [44]. 
Thus, to correctly confront the problem, after selecting a good generator from a theoretical point 
of view, a test on the samples produced during the application should be conducted, which in 
turn should be followed by the verification of the convergence and the accuracy of the prediction 
of the specific problem. 

For the current work statistical tests have been performed for two different cases. In the first 
case the behaviour of the generator has been tested with respect to the samples generated and 
used during the application. As a second case statistical tests have been performed to evaluate 
the appropriateness of the samples from a uniform distribution after their transformation to 
samples following a different statistical distribution for the simulation of the material properties 
of the layer. This second case was evaluated basically to assure that the transformation of the 
samples from one distribution to the other does not affect the final result. 
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In the first part, for the empirical testing of the generators following tests have been performed: 

• Kolmogorov-Smirnov Test 
• Gap Test 
• Serial correlation test 
• Up and Down Test 
• Maximum of t Test 
• Permutation Test 

The scope of all tests performed was to verify the correct use of the MC method in the current 
work. As far as the empirical tests concerned, these have been selected as the more 
characteristic ones within the literature [44], [46]. In the second part, where the purpose was to 
verify the correctness after the samples’ transformation from the uniform distribution to some 
other, the Kolmogorov-Smirnov Test has been employed. 

It should be noted, that all statistical tests performed, where applied in combination with the 
sample generations algorithms employed in the applications of the current work, analysing this 
way, not only the adequacy of the random number generators selected, but also all subgroups 
of the generated samples.   

3.3 Mean Value Method 

Usually the information at hand or the data are sufficient only for the estimation of the first and 
second moment, namely the mean value and the variance of a random variable. Therefore, for 
the estimation of the reliability of a structural system the functionals of the methods employed 
should be limited to function of these first two moments. Under these conditions the reliability 
can be estimated using a function of the first and second moments of the design variables, 
when no information is available for the underlying statistical distributions.  

Consequently, use of this information for the basic variables can lead only to an estimation of 
the mean value and the variance of the failure function, applying a Taylor expansion on the 
function about its mean value.  For the method of generation of system moments [49] (also 
called statistical error propagation method or delta method), let a function z = z(X) with X the 
vector of the N basic variables. Then, applying the Taylor expansion of z of the N variables 
around Xm, [ ]Nmm1

T
m X,...,X=X , where Xim is the mean value of variable Xi and neglecting 

terms higher than 2nd order it is: 

( ) ( ) ( ) ( ) ( ) jim
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2
1Xzzz XXXXX +++≅   Eq. 16  

where the following notation has been used: 

X X X= − m        Eq. 17 

while in Eq. 16 summation of terms with repeated subscripts is implied, and the partial 
derivatives of function z(X) with respect to the variables Xi are denoted by: 
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The method of moments can be used for the estimation of the central moments of z(X) in terms 
of the corresponding moments of the variables Xi, which are defined by: 
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( ) ( ) ( )µ µk k i i im
k

i ii
X X X f X dX= = −

−∞

∞∫   k = 2, 3, 4  Eq. 19 

where f(Xi) denotes the probability distribution function (PDF) of variable Xi. The mean value of 
the function z(X) in case the basic variables of the vector X are uncorrelated is given by [49]:   

[ ] ( ) ( )( ) i2m
2

im z
2
1zzE µ+= XX       Eq. 20 

The variance of the function z(X), respectively, when the basic variables of the vector X are 
uncorrelated is given by [49]: 

[ ] ( )( ) ( ) ( )( ) i3m
2

imii2
2

mi2 zzzz µ+µ=µ XXX      Eq. 21 

For completeness, also the third and fourth moment of the function z(X), when the basic 
variables of the vector X are uncorrelated is given by [49]: 

[ ] ( )( ) i3
3

mi3 zz µ=µ X        Eq. 22 

[ ] ( )( ) ( ) ( )( ) j2i2
2

mjmii4
4

mi4 zz6zz µµ+µ=µ XXX  i < j   Eq. 23 

It should be noted that the method of moment generation is approximate, while its accuracy 
depends on the specific function z(X). Keeping terms up to the second order improves the 
accuracy for non linear functions. However, the accuracy of the estimations also depends on 
the quality of the statistical information of the basic variables. If experimental data from small 
samples are used the uncertainty inserted in the estimation of the system moments could be 
much greater than that neglecting the higher order terms [49]. In the applications usually 
presented, the estimation of the first two moments of the function are performed using only the 
first order terms, reducing the accuracy for non linear functions. In the current work the 
estimation of the moments is performed by retaining also the second order terms.  

In the simplest case, the estimation of the failure prediction is performed based on these two 
moments and usually assuming that the function follows the Normal distribution. In [4] it is 
mentioned that the basic causes of error relating to the mean value method is precisely the 
assumption that the response follows the normal distribution in combination with the Taylor 
expansion as an approximation of the function. Moreover, it is noted that the results of any 
uncertainty analysis method should be independent of the mathematical expression of the 
failure function of the problem, when the initial definition of failure is kept. To be more specific, if 
we assume that the failure function of a problem is defined by G = R – S, the results of the 
analysis for the probability of failure PF = P(R<S) should be equal to that of the probability 
PF = P(R-S<0) or of the probability PF = P(R/S<1). This condition, however, is not satisfied for 
all cases in the mean value method. For example, considering the following equivalent 
expressions for the safe state of the Tsai-Hahn failure criterion for composite materials: 
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with XT, XC, YT, YC the strength properties along the fiber direction and transversely to it in 
tension and compression, respectively and S the in-plane shear strength and σ1 and σ2 the 
applied stresses along the fiber direction and transversely to it respectively and σ6 the applied 
in-plane shear stress, the results for the probability of failure by use of the mean value method 
are different. 

Nevertheless, application of the method in combination with the finite element method can be 
found in [50] for the evaluation of the first ply failure probability and the buckling of a laminate. In 
this application stochastic parameters are considered the elastic material properties, the 
orientation of the fibers, as well as the thickness of the layers. Comparing the results obtained 
through application of this method with the results of the Monte Carlo simulation the accuracy 
achieved is acceptable.  

In case more information are available for the basic variables of the problem, as for example the 
statistical distribution that these variables follow or the higher order central moments, these 
additional data can be used in order to improve the accuracy of the estimation of the failure 
probability. In [51] a method is presented according to which, if the central moments of the 
failure function are known, then the cumulative distribution function of the failure function can be 
approximated through use of the Lamda family distributions. Similar to the approach of [51] the 
Edgeworth Expansion technique and the Pearson family distributions can be used as described 
in the following sections. 

3.3.1 Edgeworth Expansion Method 

According to the Edgeworth Expansion Method an unknown cumulative distribution function of 
variable x can be approached by use of a series expansion of the Normal distribution, Φ(x) in 
terms of the central moments of x. This is given by [52]: 
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where Φ(n)(x) are the n-th order derivative of the Normal distribution function. 

Although the approach is asymptotic, according to [52] it is not advisable to use terms 
containing higher moments than the third, or fourth, since these are difficult to obtain by use of 
small sample sizes. Moreover, the salient point is to approach effectively the unknown 
cumulative distribution function with only a few terms. Thus, the approach with two terms of the 
series for the failure function, K, in terms of the standardized variable z is given by: 
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where:  
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It should be noted that for large K the expression of Eq. 25 can sometimes lead to negative 
values of F(a), but this is the approximate nature of the probability distribution, since the 
expression does not result in the exact value of the distribution [52]. Moreover, in the case of 
the failure function, we are not interested in the exact value of the function, but rather in the 
probability of survival, that is, the probability that K has a value less than zero, ( )0KP ≤ . 
Conversely, the probability of failure, PF, is expressed by the relationship 
( ) ( )0KP10>KP ≤−= , since the two events are mutually exclusive.  

Additionally, due to the fact that the estimations for the 3rd and 4th order central moments are 
sensitive to observed outliers, the method should be used with care, especially if a small 
sample size has been used (less than 200 observations) [49]. The accuracy of the 
approximation should be checked with proper statistical tests, as for example the Kolmogorov-
Smirnov test.  

The Edgeworth Expansion technique has been initially applied in [53] for the approximation of 
the failure probability of an off-axis composite material layer under uniaxial loading conditions, 
employing the Hill failure criterion as the failure function. The Edgeworth Expansion method is 
also used in the current work and was further developed for application in the design of 
composite material wind turbine blades.  

In comparison to the mean value method, the Edgeworth Expansion at first view presents 
several similarities. The main differences of these two methods are two: The first is that the first 
two moments of the failure function for the Edgeworth Expansion application is performed by 
keeping terms up to the second order, increasing this way the accuracy of the method for non-
linear functions. The second is that following the mean value method it is assumed that the 
failure function follows the Normal distribution, while for the Edgeworth Expansion method the 
estimation is improved by using also higher order moments of the failure function.  

The condition requiring the probability estimation method to be independent of the expression of 
the failure function is not satisfied also for the Edgeworth Expansion method for many problems 
as for the case of the mean value method. The point is however, that the method as applied in 
the problems that will be presented in following sections of the current document, is proved 
sufficiently accurate taking into account the small computational cost of the method in 
comparison to the others used in the current work.  

As far as the number of terms in the expansion that should be kept for the present method in 
order to estimate the cumulative distribution function of the failure function, as shown in [54] use 
of two terms is sufficient.  

3.4 First order reliability method 

The first order reliability methods (FORM) can be characterised as extensions of the mean 
value method, developed to compensate for several technical difficulties related to the 
application of this basic method [4]. The main difference of the FORM in comparison with the 
mean value method is that the Taylor expansion of the failure function is not performed around 
the mean value of the function, but at a different point, which is called most probable failure 
point, as described in the following. 
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3.4.1 Hasofer-Lind method 

The first step in order to satisfy the condition for the invariance of the reliability estimation 
method independently of the mathematical expression of the failure function was the 
transformation of the random variables of the problem to a set of normalized uncorrelated 
random variables through an orthonormal transformation [55], [4]. To this end, apart from the 
transformation of random variables following the Normal or the Log-normal distribution there 
several exact or approximate transformations [56], [57] have been proposed for variables 
following other distributions. The most widely used of those is the Rosenblatt transformation 
[58]. The failure function is thus, defined in terms of the normalized and independent variables. 

This approach is independent of the statistical distributions of the random variables, since of the 
Rosenblatt transformation only the first two moments (the mean value and the variance) of the 
variables are needed. The estimation of the safety index and consequently a first estimation of 
the failure probability can be performed, this way, irrespective of the information of the statistical 
distribution of the problem variables. In case there is a need to improve the accuracy of the 
response estimation in probabilistic terms, then the information of the statistical distributions of 
the basic variables can be integrated in the solution of the problem, as described in the 
following section of the current document.  

Considering the set of independent normalized variables: 
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where [ ]iX XEm
i
=  the mean value and ( )i2X Xs

i
µ=  the standard deviation of variable Xi the 

safe state and the failure state, which are separated by the limit state function, can be 
represented in the space of the above reduced variables. In terms of the reduced variables, iX′ , 
the limit state function can be written as: 

( ) 0mXs...,,mXs,mXsg
NN2211 XNXX2XX1X =+′+′+′    Eq. 29 

For example in Figure 3 the limit state function for an on-axis unidirectional composite material 
is presented in the space of the random variable X and the reduced variable X’. The criterion 

used is the failure polynomial tensor with the non-diagonal term 
2

H
H 11

12 −= , which is written in 

terms of the random variables of the problem as: 
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Moreover, for the presentation in the space of two variables, it is assumed that only the strength 
in tension along the fiber direction and transversely to it, XT and YT are random variables, while 
the applied shear stress is zero.  
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Figure 3 Example of limit state on the space of the original variables of the problem (left) and 
the respective reduced variables (right) 

In Figure 3 one should note that the surface of the limit state ( ) 0g =′X  approaches or departs 
from the origin as the safe state reduces or enlarges, respectively (on the specific example, 
enlargement of the safe state is accomplished by reducing the applied stress transverse to the 
fiber direction, σy = σ2). Consequently, the position of the failure surface with respect to the 
origin in the space of the reduced variables is indicative of the reliability or safety of the system. 
The position of the failure locus, which in the space of two variables is a curved line, could be 
defined through the minimum distance of the surface ( ) 0g =′X  from the origin in the space of 
the reduced basic variables of the system. 

It has been proven [59] that the point on the failure locus, which defines the minimum distance 
of the limit state surface from the origin in the space of the reduced variables, is the most 
probable failure point. 

Thus, in an approximating sense, this minimum distance form the origin can be used as a 
measure of reliability [48]. The requested minimum distance from a point ( )N21 X,...,X,X ′′′=′X  
on the failure surface ( ) 0g =′X  to the origin of the X′  space is given by [59]: 

( ) 21T2
N

2
2

2
1 X...XXD XX ′′=′++′+′=      Eq. 30 

The point on the failure surface ( )∗∗∗ ′′′ N21 x,...,x,x , which has the minimum distance from the 
origin can be found by minimizing function D, under the constraint ( ) 0g =′X  using for example 
the method of Lagrange multipliers [48]. The minimum distance to the origin is called the 
reliability index, β, while the failure probability is defined by: 

( )β−Φ≈fP  

Where ( )xΦ  is the cumulative probability of the Normal distribution. 

It should be noted that if equation ( )X′g  is linear with respect to the normalized variables, then 
the above solution would be exact, while in Figure 3 the failure function would be presented by 
a straight line.  

The method found application in problems involving composite materials during the 1990s, 
while one of the pioneering works for the reliability estimation of a laminate is [60], where the 
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applied loads or to be more specific the applied layer stresses are considered as random 
variables. 

3.4.2 Rackwitz-Fiessler Method 

With the Rackwitz-Fiessler method an improvement to the method is offered to account for 
basic random variables following other than the Normal distribution. As a result, the failure 
probability estimation is performed more accurately. To be more specific, if the statistical 
distribution of the random variables, X1, X2, …, XN, is not the Normal distribution, the probability 
of failure, PF, or the probability of survival, PS, can be estimated using an equivalent to the 
Normal distribution. Theoretically, such an equivalent distribution can be obtained by use of the 
Rosenblatt transformation, as shown in [56]. With employment of the equivalent distribution the 
calculations for PS follow the same procedure as in the case where the variables are Normal 
variates.  

For a variable that is not a Normal variate, the equivalent Normal distribution can be 
approximated so that the cumulative distribution and the probability density of the equivalent 
Normal distribution are equal to that of the non-normal distribution at the appropriate point ∗

ix  
on the failure surface [48]. In mathematical terms, this can be written as: 
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m  and N
Xi

s  is the mean value and the standard deviation, respectively of the equivalent 

Normal distribution for Xi, ( )∗iX xF
i

 is the original cumulative distribution function of Xi and ( )−Φ  

is the cumulative distribution of the standard Normal distribution, while ( )∗iX xf
i

 and ( )−φ  are 

the corresponding probability density functions. Solving the above system of equations for the 
unknown mean value and standard deviation of the equivalent Normal distribution for Xi at ∗

ix  
one has: 
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Thus, the variable Xi at the failure point ∗
ix  is normalized by: 
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During the iterative approaching procedure of the most probable failure point, that is the point 
on the failure surface ( ) 0=′Xg , which is at the smallest distance form the origin, the mean 
value and the standard deviation of the equivalent Normal distribution should be calculated at 
each iteration using the relations of Eq. 32 and Eq. 33. Thus, for the normalization of the 
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variable at every iteration the true mean value and standard deviation of the variable are 
replaced with the corresponding ones of the equivalent Normal distribution [48]. The algorithm 
for the iterative procedure followed for the estimation of the most probable failure point and the 
β index is presented in [56]. The procedure includes the transformation of the original non-
normal random variables, which might also be correlated, to independent variables following the 
Normal distribution. 

The method, as described in the above, from now on called FORM, was applied in [61] for the 
reliability estimation of a composite material layer under uniaxial loading, considering the 
strength properties and the off-axis angle of the UD layer in combination with the applied 
stresses as stochastic variables. Moreover, a comparison is presented in the same work with 
results obtained applying the Hasofer-Lind method, concluding that the latter results in less 
conservative estimations than FORM. Additionally, FORM is applied in [62] for the last ply 
failure probability estimation of a multilayered plate under transverse loading, where again the 
strength properties of the material and the transverse load were assumed to be the basic 
variables of the problem. The results of the FORM method were found in good agreement with 
that of a MC simulation. Furthermore, in [63] FORM method is used for the first ply failure 
estimation of a multilayered plate under transverse loading in combination with the finite 
element method. In this case, however, only the material strength properties are considered to 
as random variables. 

3.4.3 Higher order reliability methods 

For non-linear failure functions, as in the case of the failure function of a composite material 
layer, the exact calculation of the failure probability or the reliability generally involves 
mathematical and computational difficulties. In contrast to the linear case, there is not always a 
single solution for the minimum distance of the failure surface to the origin in the space of the 
reduced variables. However, for practical cases it is necessary to approximate the failure 
probability of interest, assuming that the point ∗′X  on the failure surface having the minimum 
distance form the origin on the space of the reduced variables is the most probable failure point. 
The tangent plane on the failure surface at the point ∗′X  can then be used for the 
approximation of the true failure surface and the required reliability or safety probability can in 
turn be calculated as in the case of having a linear failure function [48]. Depending on whether 
the true non-linear failure surface is concave or convex with respect to the origin, this 
approximation could be conservative or non conservative, respectively, as presented in Figure 4 
for the case of two basic variables.  
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Figure 4 Non-linear failure functions on the reduced variables space 

The required tangent plane at the point ∗′X  is defined by: 
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Where the partial derivatives of ( )Xg  are calculated at the point ∗′X .  

Based on the above approach, the minimum distance from the tangent plane to the origin 
defines the appropriate reliability index, which can then be used as a measure of the reliability 
[48].  

In general, the linear approximation of non-linear failure functions is equivalent to replacing the 
N-dimensional failure surface (hyper-surface) with a hyper-plane, which is tangent to the failure 
surface at the most probable failure point. Usually, the accuracy of the linear approximation of 
the second moment is difficult to estimate and this depends on the degree of non-linearity of the 
function ( )Xg . For a general non-linear ( )Xg , the accuracy can only be estimated numerically 
for specific forms of failure functions [48]. The accuracy can be improved by considering a 
quadratic or a polynomial approximation of higher order, which, however, effectively leads to a 
higher numerical/computational cost [64].  

For the reliability estimation of a lamina a quadratic approximation has been applied in [65], 
while for the reliability estimation of a laminate the quadratic approximation has been 
implemented in [66]. Nevertheless, in both cases it was found that the results are close to 
estimations conducted using the FORM method, making the higher numerical cost as a result of 
the quadratic approximation unjustifiable.  

3.4.4 Algorithms for the estimation of β index 

Several algorithms have been proposed for the approximation of the most probable failure point 
and the β index, e.g. [48], [4] and [2]. A comparison between five algorithms that can be used 
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for the approximation of the most probable failure point has been conducted in [67]. The general 
conclusion of that work is that the selection of the more effective algorithm depends on the 
failure function of interest. Similarly, in [68] a new search algorithm is proposed for the 
estimation of the β index and its application is again compared with other widely used.  

One of the main reasons for investigating alternative reliability estimation methods within the 
frame of the current work is that application of the β index method comprises an iterative 
procedure. Moreover, since it is not certain that the procedure will converge for all cases 
examined the method is unattractive for application during the design phase of a wind turbine 
blade, which is of interest.  

Furthermore, since the β index method is used in the current work for comparison purposes, it 
was not considered necessary to investigate the application of the various algorithms presented 
in the literature. Therefore, the algorithm that is has been adopted is the one described in [2], 
which is rather widely used. It should be noted, however, that there is no guarantee that the 
algorithm converges in all cases, while it is probable during its application to result in values for 
the basic variables that are out of their natural limits [2]. 
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4. Lamina failure probability 

4.1 Lamina failure probability under uniaxial load 

For the investigation of the strengths and weaknesses of the reliability estimation methods in 
composite material structures in general, as a first step the reliability of a lamina in uniaxial 
stress state is studied. The effectiveness of the various methods presented is assessed 
comparing the respective results with that of Monte Carlo simulation and experimental data, 
wherever these are available. For a first application the case of off-axis unidirectional layers is 
investigated.  

The use of the EDW method for the estimation of the failure probability of off-axis coupons in 
tension in conjunction with the Hill failure criterion [69] was initially presented by Wetherhold in 
[53]. The method has been applied for the case of a unidirectional off-axis Glass/Epoxy layer 
under uniaxial tension load for comparison with experimental data from [41]. Moreover, in [53] it 
was shown that the results using either the maximum stress or the maximum strain failure 
criterion were not in good agreement with the experimental data. Nevertheless, in [54] it was 
shown that the EDW method results in better estimates when used in conjunction with the 
quadratic failure criterion. Due to this reason and taking into account the remarks presented in 
section 2 only the quadratic form of the failure criterion is applied in the current work. In [54] 
apart from results from application of the Edgeworth Expansion Technique (EDW) results were 
also presented from application of the Pearson method and a semi-deterministic method (which 
are not presented in the current document). It was shown that results from all the methods 
applied were in good agreement with the experimental data. In [54] the semi-deterministic 
method was suggested as having a large potential to be used during design applications, due to 
its remarkable simplicity, comparable speed of calculations to that of pure deterministic and 
good agreement of the results with the more sophisticated methods applied.   

The number of terms in the EDW application was also examined in [54], where it was shown 
that the improvement achieved using two instead of one term, that is, correcting the assumption 
that the failure function follows the Normal distribution is not important for the cases studied. 
Additionally, the improvement attained using also the fourth moment of the failure function is 
clearly smaller than the improvement attained using two instead of one term. However, there 
are differences, particularly in the estimations at the small values of probability of failure, which, 
nevertheless, are of the most interest, since during the structural design it is necessary to 
achieve a significantly small probability of failure. In Figure 5 the effect of the number of terms in 
the Edgeworth expansion is shown for two case of off-axis Gl/Ep layers, namely 15° and 20°, in 
comparison with experimental data, denoted “Exp.”, derived from [41] and application using the 
TH failure criterion as described in [54]. Results from Monte Carlo simulation (MC) are also 
shown for comparison purposes.  

Experimental results from the OPTIMAT BLADES project (ENK6-CT2001-00552) [70] were 
used for an assessment of the presented reliability estimation methods. The results for the 5 
basic material strength properties, i.e. the strength in tension and compression along the fiber 
direction and transversely to it, XT, XC, YT and YC, respectively and the in-plane shear strength 
are presented in [71]. The properties are assumed to follow the Normal distribution, although 
other distributions could be used as well for the modeling of the strength properties, e.g. the 
Weibull or the Log-Normal distribution. The statistical parameters of the strength properties, as 
obtained in [71] are shown in Table 1.  
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Figure 5 Effect of number of terms in the EDW expansion 

Table 1: Statistical parameters of the strength properties of UD layer 
 

Property Mean Value (MPa) St. Deviation (MPa) C.O.V. (%) Distribution 
     
XT 776.5 36.1 4.65 Normal 
XC 521.8 16.5 3.16 Normal 
YT 54.0 2.6 4.81 Normal 
YC 165.0 4.8 2.90 Normal 
S 56.1 1.1 1.96 Normal 

 

 

It should be noted that the experimental data, statistically analyzed and presented in Table 1 
were obtained by tests conducted on coupons of 1 or 2 plates (for each parameter) only at 
University of Patras (while data reported in [70] are the results of tests conducted at more 
laboratories).  

Figure 6 presents a comparison of the failure probability estimate as obtained by application of 
the Edgeworth Expansion method (EDW), the Monte Carlo simulation (MC) and the FORM 
method, for a unidirectional 10° off-axis layer under tension using the TH failure criterion, with 
experimental results obtained within the frame of the OPTIMAT BLADES project [70]. For the 
modeling of the material strength the data presented in Table 1 were used. It is clearly seen that 
the failure probability estimation is far from the experimental data, although the results of the 
three reliability estimation methods applied are in good agreement. Since similar deviations 
from the experimental results were obtained also for the 60° off-axis layer under tension, as well 
as the 10° off-axis layer under compression, the effectiveness of the failure criterion used, as 
well as the sensitivity of the prediction on the statistical data used for the basic variables of the 
problem were investigated.  
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Figure 6 Failure probability estimation for an 10° off-axis Gl/Ep layer under uniaxial tension 

In Figure 7 the purely deterministic results are presented for failure uniaxial stress estimation of 
off-axis loaded Gl/Ep layers in comparison with experimental data obtained from [70]. For the 
theoretical predictions, shown by the dashed line, the mean values of the strength material 
properties were used, while the failure criterion applied was the EPFS. The experimental data 
conducted by University of Patras (UP) in tension and compression for coupons with off-axis 
angles 10° and 60° are shown with square marks, while those obtained in tension by 30° off-
axis coupons by Vrjie University of Brussels (VUB) and Risoe are marked with crosses and 
triangles, respectively. It is clearly seen that the theoretical predictions are not in good 
agreement with the test data. However, the theoretical predictions are much improved, if 
instead of the shear strength value obtained by tests conducted on ±45° coupons the respective 
value obtained by employing the experimental data of V-notched specimens is used [72], shown 
by the continuous line. The value for the shear strength obtained by the V-notched specimens is 
about 45% higher than that obtained by the ±45° coupons (81MPa versus 56MPa, respectively). 
At this point it should be noted that theoretical predictions obtained by employing the TH 
criterion are almost identical to results using the EPFS criterion. Moreover, it was shown in [73] 
that use of the mean values for the strength properties as presented in Table 1 in combination 
with Puck’s failure criterion can effectively capture the failure stresses of the off-axis coupons. 
Nevertheless, the evaluation of the effectiveness of the various failure criteria falls not within the 
scope of the current work, see also section 2 and is only discussed wherever necessary.  

Getting back to Figure 6 the failure probability estimation using the EDW method and applying 
the TH failure criterion, by assuming that the mean value of the shear strength S is that 
obtained from the V-notched specimens, denoted by “EDW (S)” is closer to the experimental 
results, but overestimating the strength obtained for the 10° off-axis coupons under tension. A 
small improvement is made by employing the EPFS criterion, denoted “EDW (EPFS; S)”, but 
still the prediction is overestimating the reliability of the coupons under the specific test 
conditions.  

A further improvement is obtained by replacing the mean value of the compressive strength in 
the fiber direction, XC, obtained by experiments conducted using the OB test specimen 
geometry [70], by the respective strength using the geometry recommended in the ISO 14126 
[74]. Tests conducted within the frame of the OPTIMAT BLADES project on the same material 
using the two different geometries resulted in two different (by 24%) estimations of the 
corresponding material strength property [71], namely a value of 686.3 MPa where obtained by 
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use of the ISO geometry in contrast to the 521.8 MPa obtained using the OB geometry. 
Reliability predictions using as the mean value for the XC the value obtained through tests on 
specimens having the ISO geometry are shown in Figure 6 by the long-dashed line, denoted 
“EDW (Xc, S)”.  
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Figure 7 Deterministic Failure stress prediction with respect to the off-axis angle of 
unidirectional loaded Gl/Ep layers 

In Figure 8 respective results are shown for the failure probability prediction of the 60° off-axis 
tension loaded unidirectional coupons in comparison to the experimental results obtained in 
[70]. Again the good agreement between results obtained with the EDW method and those from 
the MC simulation is seen, while both methods as applied result in large differences from the 
experimental data. However, for this case the corresponding modification applied on the 
theoretical estimations for the 10° off-axis layer and presented above resulted in moderate 
improvements for the failure probability prediction.  

In Figure 9 the corresponding results are shown for the failure probability of the 10° off-axis 
coupons loaded in compression in comparison to the experimental results of [70]. For this case 
only the EDW estimation is shown with a continuous line, using the TH criterion and the 
statistical parameters of the strength properties as presented in Table 1. The results of the 
EDW method application using a mean value of the shear strength of 81 MPa instead of that 
shown on the above table is denoted in Figure 9 as “EDW (S)”, which is in good agreement with 
the experimental data.  

It should be noted, however, that the experimental results, as presented in Figure 6, Figure 8 
and Figure 9 are too few for an probabilistic assessment on the one hand and on the other 
during the OPTIMAT BLADES project various subjects concerning the statistical analysis of 
experimental data and the parameters of the tests were revealed, which when trying to assess 
the effectiveness of probabilistic methods could be misleading. To be more specific, in Figure 
10 the cumulative distribution of the strength along the fiber direction, XT, as obtained by the 
experimental results of all static tension tests on UD coupons of the OB geometry and of the 
same Gl/Ep material (GEV206-R0300) reported in the OPTIMAT database are collectively 
shown by open circles (denoted “Exp.”). These include results from various plates conducted by 
various laboratories within the frame of the project. In the same figure also the cumulative 
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distribution of the experimental data used for deriving the statistical parameters of the material 
strength property, presented in Table 1, are also presented by squares, denoted “Exp. UP”. As 
already mentioned, these were obtained by testing one or two plates at one laboratory (UP). 
Clearly the two experimentally derived cumulative distributions have differences. The difference 
in the mean value is about 2%. The coefficient of variation for all experiments (90 in total) is 6%, 
while for the 30 coupons tested by UP the coefficient of variation is 4.6%, yet the two cumulative 
distributions seem different.  At the end of the project UP had 10 more coupons added in the 
database, thus, the complete set of experimental results for the XT conducted by UP is shown in 
the same figure by crosses, denoted “Exp. UP Final”. Comparing the two datasets, the 
differences are even smaller, that is, the mean values are different by less than 1% and the 
coefficient of variation of the final UP data set is 4.9%. Again the two experimentally derived 
cumulative distributions look different. To complete the discussion, the theoretical predictions 
using the Edgeworth expansion technique in combination with the TH failure criterion and the 
statistical parameters presented in Table 1, are also shown, denoted by “EDW”. If this 
prediction is compared with the complete dataset containing results from all laboratories the 
difference is similar to the ones obtained for the other off-axis angles. Even if the prediction was 
compared with the original data set, i.e. the “Exp. UP” the comparison would not do justice to 
the theoretical results. This is due to the fact, that the strength was modeled as a Normal 
variate. The Normal cumulative distribution using the statistical parameters of Table 1 is shown 
with the red line, which is clearly in good agreement with the results obtained by applying the 
EDW method. A better model to the original dataset could perhaps be obtained if the Weibull 
distribution was used instead, shown in blue line. But still, more experimental data are 
necessary to obtain a valid model for the material strength properties and then compare with 
experimental results for more general stress conditions. In DOT/FAA/AR-00/47 [75] a rigorous 
analysis on the sampling method that should be followed as well as the statistical analysis 
procedure of the experimental data for the evaluation of composite material properties, taken as 
granted, however, that the properties follow Normal distribution.  
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Figure 8 Failure probability estimation for a 60° off-axis Gl/Ep layer under uniaxial tension 
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Figure 9 Failure probability estimation for a 10° off-axis Gl/Ep layer under uniaxial compression 
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Figure 10 Cumulative distribution of the tensile strength along the fiber direction  

As a final note, in Figure 11 the results on the strength in tension along the fiber direction from 
[70] are presented with respect to the plate number from which the coupons were cut. It is 
clearly seen that the results from some of the plates (e.g. around plate number 110) are higher 
than the rest, which could not be attributed to a specific coupon manufacturing or test 
parameter.  

Due to the reasons explained in the above, as well as the fact that there are only few 
experimental results available for cases of general static in-plane loading, in this study the 
comparison with experimental data will be kept to a minimum.  
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Figure 11 XT strength with respect to the plate number 

 

4.2 Comparison of reliability estimation methods in small probability of 
failures 

In [61] the FORM method was presented for the estimation of the layer reliability under general 
in-plane stress condition. Similar to that work, conducted for Carbon/Epoxy material in this 
section the corresponding estimation is presented, for the Gl/Ep material. To this end, an off-
axis layer is considered under axial and in-plane shear stress, σX and σS, respectively, while it is 
assumed that the strength properties are Normal variates with statistical parameters shown in 
Table 1. The applied axial and in-plane shear stresses, σX and σS, respectively are assumed 
deterministic and equal to 222 MPa and 185 MPa. 

Figure 12 presents the reliability estimated through application of the FORM method for off-axis 
angles in the range of 22° to 37°. The off-axis angle is presented in the horizontal axis, while the 
vertical axis corresponds to the β index value. The secondary vertical axis shows an 
approximation of the corresponding reliability value. It should be noted that the β index value 
has only a meaning for the FORM method. For the other two reliability estimation methods, the 
results are shown in terms of the β index value, in order to facilitate comparisons in the whole 
range of reliability estimation (since the reliability scale is not linear). In the same figure results 
from the Monte Carlo simulation are also presented for comparison purposes. Results obtained 
through application of the EDW method are shown to underestimate the probability of failure for 
the cases of high reliability. Nevertheless, predictions are comparables for the off-axis angle 
range of medium probability of failure. Use of 3 terms in the EDW application does not affect the 
results, in the case of assuming that the basic variables follow the Normal distribution. 
Moreover, a second estimation of the reliability for the same problem is also shown (estimations 
in red, marked with “COV”), where instead of the coefficient of variation experimentally 
determined and shown in Table 1, the strength properties of the material are assumed to have 
twice as much standard deviation. In this case, although again the results of the EDW are 
overestimating the reliability of the layer, the difference is less, than the previous case. 
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Figure 12 Comparison of reliability estimation from applied methods 

4.3 Lamina failure locus 

Several times during the deterministic design lamina failure loci for various off-axis angles are 
used for comparing the behavior of the layer under general in-plane loading conditions. In order 
to attain results comparable with the reliability level achieved using partial safety factors during 
a deterministic design, the failure prediction has been conducted for specific reliability levels.  

The failure prediction for a specific reliability level for the EDW, FORM and MC method is 
performed by searching in the space of the in-plane stresses, the combination that gives the 
required level of reliability. On the contrary, the drawing of a failure locus under a given 
reliability level through application of the partial safety factors is simply conducted by replacing 
the mean values of the strengths with the design values and solving for the applied stress. 

For example, comparison of the failure locus predictions with the various methods in shown in 
Figure 13 for an on-axis layer under combined axial and shear stress at a reliability level of 
0.9999, i.e. PF = 10-4. The material strength properties for the layer are assumed to be that 
given in Table 1, while the failure criterion used is the EPFS criterion, expressed by Eq.3 with 
the off-diagonal term given by Eq. 7. The overall agreement of the EDW prediction, shown by 
the continuous line, with that of the FORM, shown by the dash-double dotted line, and the MC, 
shown with square marks, which is on top of the results of the FORM method, is relative good. 
This is strengthened by the fact that the EDW method has no convergence problems (as the 
FORM method) and no iterations (as in both the FORM and the MC method), which constitutes 
the EDW an attractive method for use during the design phase of a composite material wind 
turbine blade.  
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Figure 13  Failure locus for on-axis layer of Gl/Ep, comparison of various methods  

4.4 Lamina failure locus on the strain space 

Analogous results are obtained if instead of the stress space, the failure locus is estimated on 
the strain space. Starting by assuming a linear relationship between stress and strain on the 
natural system of the layer: 

 jiji Q ε=σ    i, j  = 1,2,6     Eq. 36  

where Q the in-plane stiffness matrix, which is given for an on-axis layer in terms of the elastic 
properties of the orthotropic lamina (the elasticity modulus in the fiber direction and transversely 
to in, E1 and E2, respectively, in-plane shear modulus, G12 and the Poisson ratio, ν12 by [76]: 
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the tensorial failure polynomial of Eq. 3 can be expressed in terms of the strains developed on 
the layer [76]: 

[ ][ ] [ ] 01QHQQH jijiljlkikij ≤−ε+εε    i, j, k, l = 1,2,6   Eq. 38  

where summation of terms with repeated indices is assumed. 

Assuming that the elasticity properties of the layer are deterministic and employing linear 
elasticity, the failure locus of an on-axis layer on a specific reliability level is obtained by 
applying exactly the same procedure as for the failure locus on the stress space, namely, using 
the search algorithms for the strain combination that results to the necessary reliability.  
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For example on Figure 14 the failure locus for an 45° off-axis layer on the εx – εy plane for 
reliability level 0.9999, i.e. PF=10-4 is shown by use of the EDW and the FORM method with 
lines in black color. The material strength properties are shown in Table 1, while the elastic 
properties of the material were taken as the mean values of the experimental results presented 
in [71], that is E1 = 39.04 GPa, E2 = 14.08 GPa, v12 =0.291 and G12 = 4.24 GPa. On the same 
graph the failure locus prediction of the same case but assuming that the standard deviation of 
the basic variables, that is the strength properties is shown for the two reliability estimation 
methods with lines in red (EDW-VAR, FORM-VAR). Clearly, the results of the two methods 
using the original variance of the strength properties are in good agreement, while the results of 
the EDW prediction are non-conservative in comparison to the FORM method results when 
using higher variance for the properties.  
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Figure 14 Comparison of failure locus on strain space 

4.4.1 Considering the stochastic nature of the elastic material properties 

In case the elastic material properties are also assumed as stochastic parameters of the 
problem, then with application of the reliability estimation methods presented in the previous 
sections of the current document, the failure probability of the layer can be estimated in any 
combination of axial and shear strains (assuming an in-plane stress state). 

The application of the Monte Carlo method is similar to the one presented, where only the 
strength properties were assumed stochastic, by generating random variables, namely the five 
strength and the four elasticity properties of the layer and solving the deterministic problem in 
every iteration, while for each iteration it is recorded whether a safe or a failure condition has 
been obtained.  

For the application of the EDW and FORM method, the partial derivatives of the failure function 
with respect to the elastic properties of the layer, which are incorporated in the function through 
the applied stresses, need to be estimated. Specifically, for the application of the EDW method 
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derivatives of the failure function up to the second order with respect to the basic variables, 
namely the strength and elasticity properties, are needed for a better estimation of the moments 
of the failure function. For the application of the FORM only the first order derivatives are 
necessary. To this end, starting with the failure function and with continuous back substitutions 
using the stress-strain relationships and the equations of the in-plane stiffness matrix with 
respect to the 4 elastic properties characterising the composite material layer, the 
abovementioned reliability estimation methods can be applied for the failure probability 
prediction of the layer given the strains developed.  

Failure loci at specific reliability levels in the strain space where presented in [66] considering as 
stochastic parameters apart from the failure stresses and the elasticity properties, also the 
geometric parameters of the layer (the thickness, the orientation angle, etc.), while the method 
applied was FORM. In the examples presented in this section the geometric parameters of the 
layer are assumed deterministic.  

In Figure 15 the failure locus of an 45° off-axis layer is presented on the εX – εy plane for a 
reliability level 0.9999, that is, PF = 10-4 as obtained by the application of the EDW method and 
the FORM. In the same graph the corresponding prediction, taking into consideration also the 
variability of the elastic properties (failure loci denoted by “elast”) are shown. For the case 
where the elasticity properties are also assumed to be stochastic the statistical parameters 
employed are presented in Table 2, where data where taken from [71].  

Table 2: Statistical parameters of the elastic properties of UD layer 
 

Property Mean Value  St. Deviation  C.O.V. (%) Distribution 
     
E1 (GPa) 39.04 1.32 2.64 Normal 
E2 (GPa) 14.08 0.33 2.31 Normal 
ν12 (-) 0.291 0.027 9.28 Normal 
G12 (GPa) 4.24 0.10 2.34 Normal 
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Figure 15 Comparison of Failure loci on the strain space with and without considering 
the elastic properties as deterministic 
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5. Laminate failure probability  

A laminate can be modelled as a system of many components, each one of them characterized 
by its own failure function. The failure of the laminate may in turn be characterized either by the 
failure of the first ply (FPF) or by the total failure, that is the successive failure of all layers in the 
laminate up to the failure of the last ply (LPF). When the laminate is designed so that on the 
limit state the FPF condition is not exceeded, the aim is to avoid any development of micro-
cracks in the material. On the other hand, when the design is performed in such a way, so as to 
not exceed the LPF condition on the limit state, then the scope is to exploit in the best possible 
way the material and therefore, optimize the use of the laminate.  

In the current work, the failure of the laminate is considered to be characterized by the FPF 
method for two reasons. The first is that for the LPF prediction assumptions for the material 
degradation factors are needed during the estimation of the failure load. However, since there a 
lot of discussions concerning the adequate degradation methodology including the material 
degradation factors, as for example in [76] and [77], while the most usual way of determining 
these degradation methodology it to verify the assumptions with experimental results, the 
choice of a methodology would incorporate larger uncertainty in the reliability estimation, this 
way masking the results of the current work. The second reason is that although the FPF 
assumption underestimates the final failure of the laminate, this assumption constitutes a 
conservative albeit safe approach during the design of composite material structures as wind 
turbine blades.  

In order to pass from the estimation of the failure probability of the lamina to that of the 
laminate, that is, to the basic element of the structure, in a probabilistic approach the laminate 
should be considered as a system. Therefore, considering the laminate of n plies as a system, 
where the elements of the system are the n layers, according to the FPF hypothesis, an 
adequate model of the system would be the series system. On the contrary, in the case of the 
LPF, where the failure of the system is attained by the failure of all the elements, then the 
assumption of a parallel system is more appropriate. Since the design is considered to be 
performed based on the FPF methodology, the analysis of a series system will result to the 
probability of failure of the laminate.  

Consider a laminate of k layers. Each layer will have different limit state functions. Let the limit 
state function of the i-th layer be expressed by: 

( ) ( )njj2j1ii x,...,x,xGXG =   j = 1, 2, …, k  

for which the event of failure is: 

( )[ ]0XGA ii ≤=  

Then, the complementary event of Ai will be the safe event, that is: 

( )[ ]0XGA ii >=  

The safe condition of the laminate, in the case of the FPF assumption, is described by the event 
that “none of the k layers is in a failure state”, that is: 

k21 A...AAA ∩∩∩=  

The event of failure of the laminate (the system) will be described by: 
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k21 A...AAA ∪∪∪=  

The above equation implies that one or more layers are in a failure condition. Theoretically, it 
follows from the above, that the probability the system to be in a safe state is expressed by the 
spatial integral: 

( )
( )
∫ ∫ ∫

∩∩∩

=
k21

k21

A...AA

k21k21X,...X,XS dX...dXdXX,...,X,Xf...P  

The calculation of this probability or the respective probability of failure of a laminate through the 
above spatial integral is in general difficult. In most of the cases, approximate solutions are 
necessary. From this point of view, it would be also useful to have the respective probability 
limits. The limits for the probability of non failure for the laminate, where it is assumed that the 
failures of the layers are positively correlated are given by [48]: 

ii siS

k

1i
s PminPP ≤≤∏

=

 

where the reliability of the i-th layer is denoted as 
isP . Similarly, the respective limits for the 

failure probability of the laminate are given by [48]: 

( )∏
=

−−≤≤
k

1i
fFfi ii

P11PPmax  

The range between the upper and the lower limit is obviously dependent by the number of 
layers and the relative values of their probabilities. For example, if there is a dominant layer 
failure then the reliability of the system will depend on the probability of failure of this layer and 
in some cases it would be appropriate to estimate the probability of failure of the laminate only 
by the probability of failure of the dominant layer. In this case the limits range will be narrow. In 
general, however, the limits will be rather wide, especially if the number of independent failure 
modes is large. It should be noted that in the case of composite materials, which are studied in 
the current work, the independent modes of failure are equal to the number of layers in the 
laminate, if each layer is characterized by its own failure function (as described in former 
sections of the current document).  

Specifically, in the case that the failure of each layer is completely independent of the failure of 
any other layer in the laminate, the probability of failure and the reliability of the laminate are 
given by following equations, respectively: 

( )∏
=

−−=
k

1i
fF i

P11P        Eq. 39 

∏
=

=
k

1i
sS i

PP          Eq. 40 

In case the failures of the layers are positively correlated the probability of failure and the 
reliability of the laminate are given by following equations, respectively: 

ifiF PmaxP =         Eq. 41 

isiS PminP =          Eq. 42 
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In the case where a more narrow estimation of the failure probability limits for the laminate is 
sought, the correlation coefficient between the failures of the layers should be determined. 
However, the correlation coefficient, alike the degradation factors, is difficult to be estimated, 
since the degree of correlation of the layer properties in a laminate depends for example by the 
manufacturing procedure of the laminate, the spatial distribution of the fabric properties and the 
lamination sequence. In particular, for similar layers it can be assumed that the more 
standardized manufacturing procedure the more the positive correlation of the layer properties.  

For example, during experiments conducted for the determination of the strength properties of a 
composite material, coupons are manufactured by plates of several layers, depending on the 
thickness of a layer, which are subjected to a uniaxial stress condition up to the final separation 
of the specimen, or the condition where the coupon is unable to support larger load. 
Nevertheless, in this case, while we have a laminate, we assume that the properties of this 
laminate coincide with the properties of a single layer. In other words, it is assumed that the 
properties of all layers in the laminate are equal. However, behind this hypothesis, the 
assumption that the properties of the layers are perfectly positively correlated is hidden.  

In [78] and [15] the conjecture of the laminate as a series system or as a parallel system, 
estimating the upper and lower limit of the failure probability depending on each conjecture, 
assuming however, that the failure of each layer is an independent event of the failure of 
another layer is presented. In [79] it is suggested that the laminate should be thought of as a 
series system, where the laminate failure coincides with the failure of the first ply. For the 
reliability estimation the upper and lower probability limits calculation is proposed in this work, 
as for example the use of the Ditlevsen limits. A similar approach is also proposed in [80]. In the 
same article, nevertheless, it is noted that for the specific problem at hand, where [±φ]n 
laminates are studied, the probability of failure of each layer are equal, therefore, the probability 
of failure of the system (i.e. the laminate) is equal to the probability of failure of any layer. On 
the other hand, in [81], while it is recognized that the failure of the laminate is not always 
coinciding with the failure of the first ply it is assumed that as a first approximation of the 
problem the conjecture of the laminate as a series system is essential, since the probability 
estimation of the last ply failure presumes a progressive failure analysis. Moreover, it is 
assumed that all layers are correlated, so that 

ifiF PmaxP = , since the hypothesis that the layers 

are uncorrelated means that the correlation coefficients are known.  

In [82] the last ply failure is estimated. For this estimation, if the failure of a layer is noted, during 
the load increase, then the reason of the failure of the layer is investigated to find the particular 
mode of failure (shear, matrix failure, etc.) and depending on that result, the elastic properties 
correlated with that failure are degraded to negative values. During a further load increase 
(which for the specific case is an internal pressure), the elastic properties of the failed layers are 
continued to be taken as negative until the corresponding stresses return to zero. After that, the 
elastic properties (and the corresponding stresses) are assumed to be zero. The failure of the 
laminate is assumed to be when a failure of a layer due to fiber failure is noted or when the 
stiffness matrix of the laminate gets negative.  

A very good description of the modes of final failure of a laminated plate is given in [62]. It is 
noted that for estimating the probability of the laminate to be in a safe state with more 
accurately, an investigation of each sequence of ply failures up to the final failure of the 
laminate should be conducted and then, the failure probability of the laminate should be 
approached by employing theory of probability of events. After the first ply failure, for the 
estimation of the next ply failure, it is assumed that the elastic properties of the layer that failed 
are equal to zero. Due to the size of the problem for the estimation of all failure sequences and 
the probability of their occurrence, even in the case that the laminate comprises 10 layers, only 
the most probable of all the possible failure sequences are selected for the estimation of the 
required probability of the system. Moreover, it is mentioned that in the case of composite 
materials it is rare in practice to have a laminate that can sustain a load increase after the third 
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layer has failed, while it is usual that the laminates can sustain loads even after the failure of the 
first and second ply in the lamination sequence. For the approximation of the final failure 
probability of the laminate the procedure of load increase should be also investigated. In case 
the external load is increased monotonically, then the solution is concentrated only on the 
investigation of the failure sequence of the layers. In a different case, that is, when the 
externally applied load can be increased with different ways, then an investigation on the load 
increase procedure should be also undertaken.  

5.1 Laminate failure locus prediction at specified reliability level 

For the estimation of the failure probability of a laminate under general in-plane stress state the 
classical lamination theory (CLT) is employed for the determination of the stress tensor 
developed in each laminate. The elastic properties of the material as well as the in-plane stress 
resultants of the laminate in the first phase are assumed to be deterministic. Therefore, the 
determination of the stresses developed in each layer does not entail any difficulties. 

In case the elastic properties of the orthotropic material (layer), namely the modulus of elasticity 
in the fibre direction and transversely to it, as well as the in-plane shear modulus and the 
Poisson ratio, are assumed to be stochastic, the stresses developed in each layer due to the 
externally applied loads also depend on the variability of the elastic properties. Thus, for the 
cases of analytical approximation of the failure probability (i.e. using FORM or EDW methods) 
the failure function is expressed not only in terms of the moments of the strength properties, but 
also in terms of the moments of the layer stresses, which in turn can be expressed in terms of 
the elastic properties of each layer. 

Consequently, for the analytical methods used in this work, in case the material elastic 
properties are considered as basic variables, then the partial derivatives of the failure function 
with respect to these variables is required, analogous to the procedure used in section 4.4.1.  

As an example, the FPF loci at a reliability level of 0.9999 (PF = 10-4) of a [±45/02]S laminate, 
which is characteristic of that used in wind turbine rotor blades is shown in Figure 16. The 
material considered is the Gl/Ep used in the OPTIMAT BLADES project with strength properties 
as presented in [71] and shown in Table 1. For the statistical modelling of the material elastic 
properties, the data from [71] have been used too, as shown in Table 2. The failure function 
applied is the Tsai-Hahn criterion, given by Eq. 3 with the off-diagonal term given by Eq. 6.  

In this figure the Edgeworth estimation is shown with a continuous line when only the strength 
properties are assumed to be stochastic, denoted by EDW-S, while with the dotted line (EDW-
E), the respective results are shown when both strength and stiffness are assumed to be 
stochastic. Simulation results using the Monte Carlo and the FORM method are also presented. 
In particular MC results considering only the strength properties as stochastic (MC-S) are 
presented with squares, while the respective results using the FORM method are denoted as 
FORM-S. When the stochastic nature of the elastic properties is also taken into account results 
using the FORM method are denoted FORM-E. One should first notice the small difference 
between the analytical and the MC results, noting that the EDW estimation is overrating by a 
little the structural load carrying capacity of the laminated plate. The results using the FORM 
method, when considering only the strength properties as stochastic variables are identical with 
the respective Monte Carlo data. Also in the cases of considering the elastic material properties 
as stochastic too, the results of the FORM and the MC method are in very good agreement, 
although they are not shown here for clarity. The next most important observation is the effect of 
the elastic properties variability on the failure locus prediction. For both FORM and EDW results 
the stochastic nature of the material elastic properties is affecting the failure locus.  



UPWIND Probabilistic strength assessment of FRP laminates 

Deliverable [Draft]  42/48 

-200 -150 -100 -50 0 50 100 150
Nx/h (MPa)

-80

-60

-40

-20

0

20

40

60

80
N

s/h
 (M

P
a)

EDW-S
EDW-E
FORM-S
FORM-E
MC-S

 

Figure 16 FPF failure locus of a Gl/Ep [±45/02]S laminate at PF=10-4 

5.2 Comparison with deterministic design 

While in the IEC 61400-1 [39] there is no clear reference on the target probability of failure of 
the rotor blade, it is assumed in accordance with similar structures that the design is conducted 
for a probability of failure of 10-4. Therefore, it is possible to compare the deterministic and the 
probabilistic estimation of the failure locus. In Figure 17 for example, the failure locus of a 
[0/90]S laminate is presented when only the strength properties are considered as stochastic. 
For the estimation of the deterministic failure locus, the strength properties were derived from 
the experimental data by applying the general partial safety factors on the characteristic 
material properties of 95% survival probability with 95% confidence limit. It is clearly seen that 
the deterministic failure locus, denoted by IEC, underestimates the structural load carrying 
capacity of the laminated element on the 3rd quadrant. Again the results with application of the 
Edgeworth (EDW) method are in good agreement with that of the FORM method, which are 
closely following the MC data. When also the elastic material properties are considered as 
random the failure locus is located between the probabilistic and the deterministic results, 
however it is not shown here for clarity. 
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Figure 17 Comparison between probabilistic and deterministic failure loci for a [0/90]S Gl/Ep 
laminate. PF=10-4 

Nevertheless, it should be noted, that the results presented herein depend on the amount of 
material property variability. For other test cases, where the strength and elasticity properties 
had a coefficient of variation between 10% and 20% the effect of the stiffness variability was 
much pronounced. Moreover, it was found that for this case the deterministic locus derived 
following IEC 61400-1 [39] was overestimating the ability of the structure to carry the load in the 
3rd quadrant. The corroboration of EDW predictions by simulation results is satisfactory for the 
example presented, which is even strengthened by the fact that the numerical effort for the 
FORM estimation is much greater than that needed for the EDW prediction, while it is even 
larger when considering the MC simulation. 
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6. Conclusions 

The work conducted for the adaptation and/or development of methods suitable for the 
probabilistic strength analysis of composite rotor blades was presented in the current report. 
Work performed included the development of numerical procedures for determining the strength 
of a composite laminate, using various failure criteria, by taking into account the stochastic 
nature of anisotropic (strength and stiffness) material properties.  

An analytic approximation, namely the Edgeworth Expansion Technique, was presented for the 
estimation of the failure probability of a laminated composite plate under general in-plane 
loading, considering the material mechanical properties as being stochastic. Results were 
compared with the advanced first order second moment method and Monte Carlo simulation 
data and were found in good agreement for most of the cases. Model assessment and 
validation was also performed by comparing with the experimental results wherever possible, 
basically from tests on unidirectional reinforced Gl/Ep composites under uniaxial and bi-axial 
loading. 

Results presented, focusing on the effect of the variability of the various material property 
groups, i.e. strength and elasticity, revealed that neglecting the stochastic nature of the material 
stiffness could result in an overestimation of the structural reliability. This however, depends on 
the amount of variation of the elastic material properties. 

Finally, a direct comparison has been performed between deterministic and probabilistic design 
for laminates encountered in the rotor blade structures. It revealed that in general there are 
some differences in the prediction of failure for specified target reliability, especially when the 
laminate is under compression. 

The gain in using the analytic method presented herein is in the minimization of computation 
time, since both MC simulation as well as the widely accepted FORM are rather time 
consuming. Additionally, the FORM method does not converge for all combinations of applied 
stresses and lamination sequences, which makes the use of the method during the initial 
phases of structural design of wind turbine rotor blades not attractive.  

Within the UPWIND project it is planned to implement the numerical model in appropriate 
software routines in the form of pre- and post-processors that can be used along with current 
aeroelastic codes. This will lead in quantifying blade design reliability.  
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