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1. Introduction 
This report follows on from “Development of analytical tools for estimating inactive mass” [1] 
which produced analytical tools for estimating the structural mass required in large, low-
speed electrical generators for large offshore direct-drive wind turbines. This work (also 
detailed in [2]) linked the mechanical design to the electromagnetic design, so that these 
generators could be designed and optimised. Some examples were given showing how the 
optimising the electromagnetically active material in isolation can lead to non-optimal (in 
terms of weight) solutions as compared to this integrated approach. In this report a more 
formal optimisation process will be carried out on a generator rotor structure using a Genetic 
Algorithm. 
 

2. Genetic Algorithm 
The MATLAB Genetic Algorithm Toolbox is a freely downloadable toolbox developed by the 
Evolutionary Computation Research Team at the University of Sheffield [3], [4]. A Genetic 
Algorithm is an optimisation process inspired by biological evolution. This “off-the-shelf” 
code was chosen because of its ease of use and good documentation – the novelty is in its 
application described herein. The toolbox can be tailored to each problem by writing an 
objective function which evaluates how good a design is and returns a rating – the toolbox 
essentially does all the rest of the work. 
 

3. Rotor structure with arms 
This report examines a rotor structure with arms. In the first part the aim was to try and find 
the minimum mass for a feasible structure. The main criterion for the structure to be 
successful is that the radial deflection is not too large; later axial and circumferential 
deflection constraints were also introduced. 
 

 
Fig. 1. Rotor structure with six arms. 
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Fig. 2. Rotor structure with arms: dimensions. 
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3.1 Variables 
There are a number of structural variable which describe the rotor. The independent variables 
are listed first and then the dependent variables. These are shown in Fig. 1 and 2. 
 
3.1.1 Independent variables 
n number of arms 
t thickness of rotor cylinder back, m 
b arm dimension, circumferential, m 
d arm dimension, axial, m 
tw wall thickness of arm, m. (This can be seen in Fig. 3). 
 
The following two variables may be set as constants for simplification; later a penalty is used 
in the objective function to ensure that the machine is of a suitable size. 
 
R rotor cylinder radius, m 
l axial length of rotor cylinder, m 

 
3.1.2 Dependent variables 
θ half angle between spokes, radians 

n

π=θ     (1) 

 
I second moment of area of rotor cylinder, m4 

12

3lt
I =     (2) 

 
A cross sectional area of rotor cylinder, m2 

ltA =     (3) 
 
a cross sectional area of rotor arms, m2 

[ ])2)(2( ww tdtbbda −−−=  (4) 

 
R1 inner radius of rotor cylinder, m 

tRR 2
1
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k radius of gyration, m 
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M mass of structure, kg 

ρρ aRRntlRM )(π2 o1 −+=  (8) 

 
3.1.3 Analytical models 
The rotor structure is assessed for fitness in three different ways: radial deflection (into the 
airgap due to the normal component of Maxwell stress), axial deflection (due to the weight of 
generator material when the machine’s axis is vertically orientated – i.e. when it is being 
transported, assembled or lifted) and circumferential deflection (twist of the outside of the 
rotor relative to the rotor shaft due to the torque/shear stress). 
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uan radial deflection found analytically, m. Equation (9) is taken from [2]: 
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uallow allowable radial deflection, m 
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The radial deflection is restricted to 5% of the airgap length (which is assumed to be 1% of the 
airgap diameter [5]).  
 
yan axial deflection, m. 
yan = ya,i + ya,ii   (11) 
 

 
Fig. 3. Deflection due to axial weight. 

 
ya,i axial deflection due to part of rotor cylinder weight, m 

axiarm,

3
i

ia, 12EI

Wl
y =   (12) 

 
ya,ii axial deflection due to rotor arm weight, m 

axiarm,

4
ii

iia, 24EI

wl
y =   (13) 

 
yallow allowable axial deflection, m. The allowable deflection is assumed to be 1% of the 
axial length: 
 

100allow
l

y =    (14) 

 
li length of (rotor arm) beam at which rotor cylinder acts, m 

Rl =i     (15) 
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lii length of (rotor arm) beam on which self weight acts, m 

1ii Rl =     (16) 

 
Iarm,axi second moment of area of rotor arm (for weight), m4 
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W weight of nth of rotor cylinder, N. The tilt angle φ is 5-10º for normal orientation, but 
is set to 90º for this study to represent assembly, transportation and lifting operations. 
 

ltgnRW )sin()/π2( ϕρ=  (18) 

 
w self weight uniformly distributed load of rotor arm, Nm 

agw )sin(ϕρ=    (19) 

 
Iarm,tot Second moment of area of rotor arm w.r.t. torsion, m4 

12

)2)(2(

12

3
ww

3

torarm,
tbtddb

I
−−

−=  (20) 

 
zA Circumferential deflection, m. This is shown in Fig. 4. 
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Fig. 4. Deflection due to shear force/torque. 

 
zallow allowable torsional deflection, m. It is assumed that the relative twist is 0.5º. This is 
probably a very relaxed limit but further study of the structural dynamics and vibrations 
should lead to a stricter criterion which represents how stiff the structure should be in this 
direction so that it is not easily excited. 
 

Rz π2
360

5.0
allow =    (22) 

 
3.1.4 Constants 
E Young’s Modulus, 200 GPa 
ρ density, 7850 kg/m3 
Ro radius of rotor shaft, 0.5m 
q normal stress, 280 kPa 
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g acceleration due to gravity, 9.81m/s2 
 
3.1.5 Common penalties/constraints 
The objective function is set up to penalise designs if: 
 
(i) If uan > uallow. Interpreted as: the radial deflection into the airgap is too large. 
 
(ii) If y > yallow. Interpreted as: the axial deflection is too large. 
 
(iii) If z > zallow. Interpreted as: the torsional deflection is too large. 
 

(iv) If 
n

R
b oπ2> . Interpreted as: the dimension b is greater than nth of the rotor shaft circumference  

 

(v) If 
σπ2

2 T
lR < . Interpreted as: the dimensions R and l are too small in order to provide the 

necessary torque T. 
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4. Optimisations for specific Aspect Ratio 
The main of these optimisations is to find lightweight structures. In this case the aspect ratio, 
radius and axial lengths are chosen for a 5MW rotor [2]. The optimisation is carried out for 
each value of aspect ratio, Krad (Table 1). The value returned by the rating function is of the 
form: 
 
val =  
((2*pi.*t.*l.*R*rho)+(N.*(R_1-R_o).*a*rho)) MASS 
+((sign(u_A-u_all)+1).*(u_A-u_all).^3.*5e17) RAD DEF 
+(((sign(y_A-y_all)+1).*(y_A-y_all).^3.*5e17)) AXI DEF 
+(((sign(z_A-z_all)+1).*(z_A-z_all).^3.*5e17)) CIR DEF 
+(((sign(b-b_all)+1).*(b-b_all).^3.*5e13)); ARM WIDTH 
 
So that structures which have deflection larger than allowed are penalised. There is also a 
constraint so that the width of the arms is restricted to the physical dimension at the rotor 
shaft radius. 
 
The optimisation was carried out several times for each value of Krad (the GA cannot 
guarantee that the best solution is found; just that generally the final solution is better than 
the starting values). The best solutions are shown in Table 1. 
 

Krad 0.022 0.061 0.12 0.283 0.955 

R (m) 7.0 5.0 4.0 3.0 2.0 

l (m) 0.31 0.61 0.96 1.7 3.82 

Best Score: 36654 28218 25356 22130 19673 

n 5.04 5.06 5.05 5.02 7.1 

t (m) 0.181 0.129 0.103 0.0763 0.0473 

b (m) 0.942 0.942 0.94 0.939 0.672 

d (m) 0.962 0.769 0.578 0.649 0.768 

tw (m) 0.0192 0.0161 0.0159 0.0108 0.00974 

Mass (kg) 3.669×104 2.828×104 2.544×104 2.213×104 1.968×104 

uA (m) 6.996×10-4 4.987×10-4 3.983×10-4 3.000×10-4 1.997×10-4 

yA (m) 2.849×10-4 1.157×10-4 8.324×10-5 2.235×10-5 3.542×10-6 

zA (m) 0.0061 0.0044 0.0035 0.0026 0.0017 

Table 1. Best optimal results for a 5MW generator rotor structure with arms for a range of 
Krad 
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Fig. 5. Structural mass results (in 103 kg) for a 5MW generator rotor structure with arms for 

a range of Krad 



Structural optimisation of a radial-flux permanent magnet generator (for a direct-drive wind turbine) 
using a Genetic Algorithm 
 

8 

5. Optimisation with variable Aspect Ratio 
In this section the aspect ratio is allowed to vary and the structure is optimised again for 
minimum mass. The value returned by the rating function is of the form: 
 
val =  
((2*pi.*t.*l.*R*rho)+(N.*(R_1-R_o).*a*rho)) MASS 
+((sign(u_A-u_all)+1).*(u_A-u_all).^3.*5e17) RAD DEF 
+(((sign(y_A-y_all)+1).*(y_A-y_all).^3.*5e17)) AXI DEF 
+(((sign(z_A-z_all)+1).*(z_A-z_all).^3.*5e17)) TOR DEF 
+(((sign(b-b_all)+1).*(b-b_all).^3.*5e13)) ARM WIDTH 
+((sign((T/2/pi/sigma)-(R.^2.*l))+1).*((T/2/pi/sigma)-
(R.^2.*l)).^3*5e10);     TORQUE 
 
The main difference between this formulation and the previous one is that there is a 
minimum torque constraint. This is achieved by assuming a shear stress, σ and ensuring that 

the inequality 
σπ2

2 T
lR ≥ is met. 

 
Ranges for variables 
R 1-9 m 
l 0.2-5 m 
n: 5-15 
t 0.001-0.2 m 
b 0.1-1.5 m 
d 0.1-1.5 m 
tw 0.001-0.099 m 
 
The optimal value returned (after many repeat runs) was a structural mass of 20398 kg. 
R=2.14 m 
l=3.3 m 
n=5 
t=0.0541 m 
b=0.838 m 
d=0.647 m 
tw=0.00991 m 
 
Giving deflections: 
uan = 2.14×10-4 m (uall = 2.14×10-4 m) 
yan = 6.53×10-6 m (yall = 0.0330 m) 
zan = 0.0019 m (zall = 0.0019 m) 
 
Note that this leads to a larger mass than was found using the fixed aspect ratios. This is due 

to the dimensions in Table 1 not quite satisfying the inequality 
σπ2

2 T
lR ≥  (i.e. the result here 

is more reasonable). The optimum aspect ratio was found to be Krad = 0.77. 
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6. Introducing electromagnetic material into the optimisation process 

It is apparent when looking at actual directly-driven generators for large wind turbines that 
much smaller aspect ratios are usual. The optimisations so far have looked at the structural 
material in isolation. If the electromagnetically active material is considered then larger 
radius machines are more favourable (as this material – which is more expensive – can be 
reduced). 
 
As a starting point the magnetic material for any given generator is modelled. The shear 
stress in the previous section is assumed to require an airgap flux density of Bg = 0.85 T. 
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1
. (24) 

 
Equation (24) allows the mass of magnetic material to be estimated for any radius (and hence 
airgap length c). 
 
For example for a rotor radius R=1.92m, c=0.0038m. If the magnets have a remanent flux 
density of Br=1.2T then to produce the airgap flux density Bg=0.85T a magnet height of 
hm=0.0054 m is required. 

 
The mass of the magnets is included in the total mass: 

PMm
p

m
PM π2 ρ

τ
h

b
Rlmass














=  (25) 

 
Note too that W is altered thus: 

( )[ ])/()/π2()sin( PM nmassltnRgW += ρϕ , (26) 

 
so that the axial deflection modelling also takes this into account.  
 
val = 
mass_PM+((2*pi.*t.*l.*R*rho)+(N.*(R_1-R_o).*a*rho) 
+((sign(u_A-u_all)+1).*(u_A-u_all).^3.*5e22) 
+(((sign(y_A-y_all)+1).*(y_A-y_all).^3.*5e17)) 
+(((sign(z_A-z_all)+1).*(z_A-z_all).^3.*5e17)) 
+(((sign(b-b_all)+1).*(b-b_all).^3.*5e13)) 
+((sign((T/2/pi/sigma)-(R.^2.*l))+1).*((T/2/pi/sigma)-
(R.^2.*l)).^3*5e10); 
 
After several optimisation runs the minimal total mass was found to be 22294 kg, which the 
following parameters: 
 
R=2.06m 
l=3.55m 
n=6 
t=0.0519m 
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b=0.771m 
d=0.37m 
tw=0.0144m 
 
The increased aspect ratio is at first surprising, Krad=0.86 (one would think that the additional 
requirement to reduce magnet mass would tend to reduce the aspect ratio). The main reason 
is the dependence of the airgap length on the airgap radius (e.g. eqn. 10). As the aspect ratio 
increases, the radius and airgap length both increase. This has the effect of requiring that the 
magnet height increase in order to produce the same airgap flux density (which may 
outweigh the reduction in magnet volume from being at a larger radius, i.e. eqn (25)). 
 
One can also include the steel in the rotor back in this calculation. The structural steel and the 
steel required for the magnetic circuit are assumed to be separate here (this may be the case 
for fractional-slot machines where the rotor steel should be laminated to reduce losses; for 
integral-slot machines the rotor back iron can be solid steel and t and hry are the same 
dimension). The mass of the steel is  

steelryrysteel, π2 ρRlhmass = . (27) 

The height of the steel yoke, hry is given by: 

c
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µ
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Assuming that τp=0.1m and bm=0.08m for all machines this mass can be included in the 
optimisation function and the axial weight calculation: 

( ) )]/()/()/π2()[sin( rysteel,PM nmassnmassltnRgW ++= ρϕ  (26b) 
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Fig. 6. Total rotor mass results for a 5MW generator rotor structure with arms for a range of 

Krad 

 
The optimal rotor with arms was found at a Krad = 0.42 and a total mass = 28874 kg. 
R=2.62m 
l=2.2m 
n=6 
t=0.067m 
b=0.69m 
d=1.1m 
tw=0.011m 
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7. A variable airgap length 

The constraint of the airgap length, c (and therefore radial deflection) being a constant 
proportion of the airgap radius can lead to an artificial optimisation. In this section the airgap 
length is also a variable – increasing the airgap length means that the structure can be 
lightweight but also means that the amount of magnetic material must be increased. A 
minimum airgap length of 0.002m is set and a maximum of 0.015m is included in the 
optimisation. It is assumed that the larger airgap lengths do not lead to extra flux linkage. The 
same airgap flux density of 0.85T is demanded from all the designs. 

 
The best two designs give total rotor masses of 20415kg (Krad=0.82) and 20437kg (Krad=0.53). 
Krad = 0.82 Krad=0.53 

R=2.1m  R=2.42m 
l=3.43m  l=2.58m 
n=5  n=7 
t=0.021m t=0.023m 
b=0.604m b=0.59m 
d=1.29m d=1.32m 
tw=0.012m tw=0.010m 
c=0.011m c=0.014m 
c/2R=0.0027 c/2R=0.0029 

 
Figure 7 shows that there is a broad range for which the minimum mass can be found. What 
is more interesting is that the optimal airgap length, c is larger than normally seen in machine 
designs. Typically one would use c/2R=0.001, but Fig. 9 shows that lighter designs are found 
when the airgap is larger (and so the magnitude of the deflection is larger). 
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Fig. 7. Total rotor mass results for a 5MW generator rotor structure with arms – with a 

variable airgap length – for a range of Krad 
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Fig. 8. Total rotor mass results (in kg) for a 5MW generator rotor structure with arms – with 

a variable airgap length – for a range of airgap lengths (in m) 

 

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

3.00E+04

0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035

Airgap length/Airgap Diameter

M
as

s

 
Fig. 9. Total rotor mass results (in kg) for a 5MW generator rotor structure with arms – with 

a variable airgap length – for a range of airgap length/airgap diameter ratio 
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8. A simple cost optimisation 

A simple cost optimisation was carried out using the following specific costs: 
CPM=35€/kg; Csteel,mag=25€/kg; Csteel,struct=10€/kg. 
 
Figure 10 and 11 show that when optimising for costs a smaller Krad and a smaller ratio of 
airgap length/airgap diameter are preferred. This is because the electromagnetically active 
materials (PMs and steel for the magnetic circuit) is more expensive and tends to be reduced 
at larger radii. 
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Fig. 10. Total rotor cost results (in €) for a 5MW generator rotor structure with arms for a 

range of Krad 
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Fig. 11. Total rotor cost results (in €) for a 5MW generator rotor structure with arms for a 

range of airgap length/airgap diameter ratios 
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9. Discussion and Conclusions 
Consecutive sections of this report have presented models and optimisations of increasing 
complexity, from looking at a rotor structure with a fixed aspect ratio all the way to the cost 
of the same structure (but with electromagnetically active material) with a variable aspect 
ratio and variable airgap length. 
 
Along the way it has been seen that when only structural material is considered quite large 
aspect ratios are better for mass minimisation. Including the electromagnetically active 
material leads to smaller aspect ratios, particularly for cost minimisation. If a simplification of 
no significant leakage with increasing airgap length is assumed then it can be seen that lighter 
machines can be produced with a larger airgap length/airgap diameter ratio. 
 
The methodologies outlined in this report allow the following “next steps” to be pursued: 

• So far only a rotor with arms has been modelled – optimisation of a generator needs a 
simultaneous optimisation of the stator too. 

• Rotor and stator structures with “arms” and “discs” from [2] will be modelled. 

• The flux density will be a variable. Shear stress can be scaled by airgap flux density 

and the normal stress can be calculated accordingly
0

2
g

µ2

B
q = . 

• Sensitivity of the optimisation to relative material costs. 

• Sensitivity of the optimisation to the deflection constraints. 
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