UpWind

UPWIND Workshop on EWEC, Brussels, April 1st, 2008

Exploring the design limits of very large wind turbines

R.P.L. Nijssen, T. Westphal, E. Stammes, J.J. Heijdra, D.R.V. van Delft

Intro

Why?

Overview of main topics/results of 2nd year

Why?; the 'BIG' questionnaire

Called 10 people from industry and research

- Statistically absolutely UNSOUND sample of <u>experts</u> that happened to pick up the phone
- \prec Two questions (actually 4)
 - Why bigger blades? (1a)
 - Why not (1b)
 - Vision on consequences of larger blades for:
 - Construction (2a)
 - Material (2b)
- ✓ Expert, not spokesman

The 'BIG' questionnaire

Note the quotes

"

Why bigger blades (1a)

Energy ~R^{2.1} (all)

- ✓ Larger blade length
- ✓ Higher hub height
- ✓ Lower cut-in speed (R)
- ✓ Reynolds effects (I)

€/kWh (all)

- ✓ Per unit ~R??
 - Cabling
 - Foundation
 - Maintenance
 - Development (I)

✓ Do we really know this? (I,R) Limit offshore 70-80 m (I) Optimum offshore 10 MW (R)

Why bigger blades (1a)

'Non-technical'

- Public demands offshore,
 offshore demands larger
 turbines (all)
- "Who has the biggest one"(1)
 - More power (I)

Why not? (1b)

Square-cube (I, R)

- ✓ Mass ~R^{2.6-2.7}
- ≺ Cascades through WEC
- ✓ NB: less gravity-fatigue cycles for lower rpm (R)

Stiffness/tower clearance (I, R)

Size race at the expense of reliability (I)

Onshore

- \prec Limit size onshore reached (I, R)
 - NIMBY ~ R
- ✓ Transport (I, R)
- \prec Large market for shorter (optimised) blades in (R)
 - Asia/3rd world/Countries with low industrialisation and high area/coastline ratio/China

Manufacturing (I, R)

Why not? (1b)

Fighting square-cube \rightarrow Chord reduction and increase t/c ratio (I, R/all)

- - 2300 i.s.o. 2600 mm
 - Review blade root connection configuration
- ≺ Aerodynamics (I)
 - From blade to rod
 - Stall sensitivity
 - (Smart) Accessories: VGs, Slats,
 - Efficiency
 - Scope for higher rpm, λ for offshore (noise)
- ✓ Aeroelastics (I)
 - Lead-lag damping
 - Come-back of dampers

- Bending-torsion coupling

Construction? (2a)

Stiffer designs (all)

 Higher t/c ratio of profiles to postpone material change More parts designed closer to limit (all)
 Sectional blades (transport onshore) (I, R)
 Condition monitoring (R)
 Manufacturing (I, R)

- How to increase production volume/speed
- \prec Bigger series, keep design in portfolio longer (R)
 - Aerospace-like
 - Automation

Buckling (R)

✓ Stiffeners, ribs

Manufacturing automation

Material? (2b)

When to go to 'more exotic' material? (all)

- ✓ Higher specific stiffness fibres (all)
 - S-glass, basalt, carbon.....hybrids
 - Manufacturing
 - Up to 50-60 m no reason for carbon (I)
 - Aerodynamic restrictions call for carbon soon (I)
- ✓ In (large, onshore) Asian market (R)
 - Wood, bamboo
- \prec Developments ongoing in resins (I)

Suppliers love wind industry (I)

Wind industry loves to have supplier $\underline{S}(I)$

- \prec Dependency on single supplier might hamper introduction of new materials
- \prec Dependency on oil for resins (R)
 - Alternatives
 - Local product based, e.g. third world

Material? (2b)

Closer to maximum performance (all)

- \prec Acceptable strain 3500 $\mu \rightarrow$ 4500 μ (I)
- More detailed knowledge required, design factors to account for uncertainties to be decreased
 - Materials performance & reliability
 - Manufacturing & Control, Automation
- ✓ Less materials per blade (I)
- ✓ Spec's to include manufacturer (I)
 - Do not use brand 'X'
- Design with knowledge of manufacturing environment (I, R)
 - Expect that sometimes specs are not followed (I)

Regard Construction and Material as one (I)

The BIG questionnaire

77

UPWIND research agenda

Material behaviour

- ✓ Thick laminates
- Behaviour of construction
 - ✓ Subcomponent testing
 - ✓ Repairs
 - ✓ Sectional blades
- New design concepts
 - ✓ Damage tolerance
 - ✓ New materials
- Life cycle analysis
 - \prec Nobody mentioned this in questionnaire

Constant Life Diagram

Thick Laminates

Thick laminates

Subcomponent testing

Subcomponent testing

Subcomponent testing

Interaction WP 7 UPWIND

Optical fibre embedding performance

No negative effects on fatigue performance noted

✓ Good measurement performance

Concluding remarks

Are Industry and Research blade experts on same planet?

- Key States Ke
 - Economy of scale hard to quantify ('we <u>hope</u> project developers based their blade length on something')
 - Better grip on latter for blades
- Square-cube battle dominated by material-constructionmanufacturing
 - Decrease cost of energy
 - Increase performance and knowledge

Decommissioning/LCA not mentioned

Further discussion...

Questions/comments?

Statements

- \prec Focus on optimising current blades instead of size race
- Up to 100 m blade length, no material changes needed, only 'knowledge on material'-improvements
- Industry and Research have the same research agenda for blade improvement
- Subcomponent testing is inappropriate because the blade is an integral structure, not a collection of parts
- Decommissioning of the large number of large blades will not provide significant problems (20 years from now)

