Up-scaling by Takis Chaviaropoulos

Partners in the Upscaling Workpackage

Risoe/DTU ECN CRES Garrad Hassan LM Gamesa Delft University of Technology Knowledge Centre WMC

The Challenge

To achieve

...large wind energy penetration into the power systems (in accordance with Europe 20-20-20 targets)

...in a cost efficient way

...with a highly reliable technology

Larger Wind Turbines might be an answer (at the 10-20 MW range for Offshore installations)

How Large?

20MW wind turbines: The questions

Is manufacturing feasible ?
Is the concept economically viable ?
Is the technology needed available ?

Feasibly, Cost-competitiveness, Maturity

UpWind

1st question: Technical feasibility

able to build and transport this some decades ago

Examples from presentation by B. Hendriks (EWEC 2008)

Ballast Nedam Confederation bridge, Canad THE 175 elements ranging in mass from 1,200 to 7,500 tonnes

Technical feasibility

... we were able to design and manufacture this some years ago ...

Examples from presentation by B. Hendriks (EWEC 2008)

Warsaw, April 21, 2010

mass 680,000 kg

laeslantkering, Nieuwe Waterweg, The Netherlands

Ball-joint of 10 m diameter

Technical feasibility

we were
 able to design
 and
 manufacture
 this some
 years ago ...

Examples from presentation by B. Hendriks (EWEC 2008)

Feasibility of 20MW wind turbines

The answers from available technical expertise and UPWIND project experience:

✓ Manufacturing is possible

✓ Transportation and installation are possible BUT...

 ...this does not mean that a 20MW version of a current state-of-the-art 5MW W/T will offer any cost/performance advantages

2nd question: Is a 20MW wind turbine economically viable ?

In the energy industry, economies of scale generally lead to larger designs for cost-effectiveness

BUT...

... it is not obvious that this applies after a certain size

Economical viability of 20MW W/Ts

Up scaling – levelised cost

- Levelised cost increases with scale
- Reasons:
 - Rotor and nacelle costs scale ~s³ (?)
 - ✓ Spare parts costs follow
- Economy of scale in other costs is negated by the increase in rotor nacelle cost

SIMILARITY RULES FOR COMPONENTS UP-SCALING

1.1. External Geometry

Assuming geometric similarity for the external geometry of the rotor blades, i.e. the blade planform characteristics scale-up proportionally to the blade radius, the twist distribution and the airfoil types remain the same, we end-up with the following size dependency table.

Symbol	Defining Formula	Description	Size-Dep.
R		Blade Radius	R
r		Local Radius	R
L	$L = R - r_0$	Blade length	R
x	x = r / R	Non-dimensional spanwise distance:	Ι
		$[x_h,1]$ h=hub	
c(r)		Chord distribution	R
t(r)		Max-Thickness distribution of airfoils	R
$c^*(x)$	$c^*(x) = c(r) / R$	Non-dimensional chord distribution	Ι
$t^*(x)$	$t^*(x) = t(r)/c(r)$	Non-dimensional Max-Thickness	Ι
turist(a)		Twist distribution	I
twist(x)			1
airf(x)		Airfoil type	Ι

R: denotes linear dependency on blade radius.

I: denotes size independency.

1.1. Operational Conditions

To achieve aerodynamic rotor similarity we assume that the blade tip-speed and the collective pitch are size-independent, depending only on the actual wind-speed through the turbine control. It is notable, though, that the local Reynolds number *Re* increases proportionally to the turbine size. Aerodynamic airfoil similarity requires geometrically similar blades and equal Reynolds number, Mach number and reduced frequency (turbulence, 1P, tower passage) of the effective wind speed.

Symbol	Defining Formula	Description	Size-Dep.
$ ho_a$		Air density	Ι
U		Wind Speed	Ι
ω		Rotational Speed	1/R
ωR	$\omega R = function(U)$	Tip-speed	Ι
p	p = function(U)	Collective Pitch	Ι
V(x)	V(x) = function(U, x)	Effective Wind Speed	Ι
$\operatorname{Re}(x)$	$\operatorname{Re}(x) = V(x) * c(x) / v$	Reynolds Number (v = air	R
		kinematic viscosity)	
M(x)	M(x) = V(x) / a	Mach number ($a = speed of sound$)	Ι
k(x)	k(x) = f * c(x) / 2V(x)	Reduced frequency (f = frequency)	I (for 1P)

1.1. Loads and stresses

Symbol	Defining Formula	Description	Size- Dep.			
$d\Phi\left(x,U\right)$	$\overline{\rho_m}(x)A(x)\omega^2 r dr = \omega^2 R^4 \cdot \overline{\rho_m}(x)A^*(x)x dx$	Centrifugal force diff.	$\omega^2 R^4 \sim R^2$			
$\Phi\left(x_{0},U\right)$	$= \omega^{2} R^{4} \cdot \int_{x_{0}}^{1} \rho_{m}(x) A^{*}(x) x dx$	Centrifugal force at blade root	$\omega^2 R^4 \sim R^2$			
$\sigma_{xx,\Phi}(x_0,U)$	Centrifugal stresses are size independent					
dm(x)	Aerodynamic stresses are size independent					
$B(x_0)$						
	weight stresses are proportional to <i>R</i> , rendering					
$M_{B}(x_{0})$	 buckling (all kinds, local buckling included), 					
$\sigma_{xx,B}(x_0)$	 weight triggered low-cycle fatigue failure 					
		stress at blade root (tension or compression)				
$\sigma_{xx,M_{B}}(x_{0})$	$= M_{B}(x_{0}) / W_{z}(x_{0})$	Weight bending stress at blade root	R			
$\sigma_{xx,A}(x_0,U)$	$= \pm M_{y}(x_{0}, U) / W_{y}(x_{0}) \pm M_{z}(x_{0}, U) / W_{z}(x_{0})$	Aero bending axial stress	Ι			
$\tau_{A}(x_{0},U)$	$= M_{x}(x_{0}, U) / W_{t}(x)$	Aero-Torsion shear stress	Ι			

Where g stands for the acceleration of gravity.

1.1. Natural Frequencies

In our analysis we shall rely on a single-beam model with uniform sectional properties along its span. Let *L* be the length of the beam. The angular natural frequencies ω_n of the different modes are proportional to $(K_m / M_m)^{\frac{1}{2}}$, where M_m stands for the generalized mass and K_m for the generalized stiffness. *i* is the radius of gyration scaling-up with *R*.

	M_m	K _m	$\omega_n \approx \sqrt{K_m / M_m}$	$\overline{\omega_n} = \omega_n / \omega \approx$
Tension	$\bar{\rho} L \sim R^3$	EA / L ~R	$\frac{1}{L}\sqrt{EA/\rho} \sim R^{-1}$	$R^{-1}/R^{-1} \sim I$
Bending	$\bar{\rho} L \sim R^3$	$EI/L^3 \sim R$	$\frac{1}{L^2}\sqrt{EI/\rho} \sim R^{-1}$	$R^{-1}/R^{-1} \sim I$
Torsion	$\bar{ ho} Li^2 \sim R^5$	$GJ/L \sim R^3$	$\frac{1}{L}\sqrt{GJ/(\overline{\rho} i^2)} \sim R^{-1}$	$R^{-1}/R^{-1} \sim I$

• Blade natural frequencies are inversely proportional to *R*

 Non-dimensional natural frequencies (normalized by the blade rotational frequency) are size independent

1.1. Elastic deformations

Symbol	Defining Formula	Description	Size-Dep.
$w^*(x,U) = w(x,U)/R$	$\frac{d^2 w^*(x,U)}{dx^2} \approx R. \frac{M_y(x,U)}{EI_{yy}(x)}$	Normalized out-plane deflection	I for M_y Aero R for M_y Weight
$v^*(x,U) = v(x,U) / R$	$\frac{d^2 v^*(x,U)}{dx^2} \approx R.\frac{M_z(x,U)}{EI_{zz}(x)}$	Normalized in-plane deflection	I for M_z Aero R for M_z Weight
$\varphi(x,U)$	$\varphi(x,U) = \frac{M_x(x,U)}{GJ(x)/L}$	Torsional deflection	I for M_x Aero

• The normalized deflections are size independent when produced by aerodynamic loads

• The weight loads, on the contrary, produce deflections proportional to *R*

This has a direct effect on the in-plane maximum blade deflection and an indirect in the out of plane deflection related to the blade-tower clearance

1.1. Aeroelastic stability – single blade

We shall base this analysis on a simplified typical-section model applied at x_0 with three degrees of freedom (n =flap, lag, torsion). Further to the earlier defined variables we add the following which are essential for stability considerations.

Symbol	Defining Formula	Description	Size-Dep.
$k(x_0, U)$	$k(x_0, U) = \omega c(x_0) / V(x_0, U)$	Reduced	$(\omega R)/V \sim I$
		frequency	
$R_{f}(x_{0})$	$R_{c}(x_{0}) = \rho_{c} c(x_{0})^{2} / \overline{\rho}(x_{0})$	Density	Ι
J	f f f f f f f f f f	factor	

Let $X = \{v^*, w^*, \varphi\}^T$ be the vector of normalized (with the local chord and, essentially with *R*) displacements due to the aeroelastic action. Then, the stability equations for the typical section, ignoring structural damping, can be written in the following vectorial form:

 $\boldsymbol{F} (\boldsymbol{X'', X'; k, R_f, \overline{\omega}_n, c_n, \overline{r_n}) = 0$

Where (') denotes reduced-time derivation, $\overline{\omega}_n$ are the normalized blade frequencies (first flap, lag and torsional), c_n are the aerodynamic coefficients once again assumed as Reynolds independent and \overline{r}_n represent normalized geometrical properties of the section.

Under the above assumptions, and size independent *k* and *Rf*, the stability bounds of the above aeroelastic system will also be size independent

Similarity Rules applied to Tower Design

- Weight scales according to ~s³
- Material strength limit exceeded for large s

Up scaling beyond similarity

• "Basic" scale factor (s), and additional scaling for diameter and thickness defined by g_D and g_t

$$m_{nacelle}(s) = m_{nacelle}(1) \cdot s^{3},$$

$$m_{rotor}(s) = m_{rotor}(1) \cdot s^{3},$$

$$H(s) = H(1) \cdot s,$$

$$D(s) = D(1) \cdot s \cdot g_{D}(s),$$

$$t(s) = t(1) \cdot s \cdot g_{t}(s)$$

Optimum Up scaling

17/9/09 Warsaw, April 21, 2010

- Weight variation with scale
- Based on volume
- Weight scales following s³⁺

$$s^3 \cdot g_D \cdot g_t$$

Economical viability of 20MW W/Ts

Why does cost seem to favor small size?

Classical up scaling results

- ✓ Weight follows s³
- ✓ Cost follows weight
- ...making a 20MW wind turbine non-attractive

But... two factors can change this

- ✓ Learning curve → cost reduction
- High initial-cost developments become attractive only at large scales

Economical viability of 20MW W/Ts

Case study: Blades

Economical viability of 20MW W/Ts Case study: Blades

		PAST					FUTURE			
		GI-P HLU (GI-P RI (GI-Ep RI (GI-Ep Prep (GI-CHybrid1(GI-C Hybrid 2	New Tech 1	New Tech 2	New Tech 3
	Single Step r(t)/r(t-1)	1,00	0,59	0,79	0,93	0,86	0,87	0,93	0,93	0,93
	Cummulative r(t)	1,00	0,59	0,47	0,44	0,38	0,33	0,31	0,28	0,26
	Single Step a(t)/a(t-1)	1,00	1,08	1,08	1,10	1,10	1,00	1,03	1,03	1,03
	Cummulative a(t)/a(t0)	1,00	1,08	1,17	1,28	1,41	1,41	1,45	1,50	1,54
WT Power (MW)	Rotor Radius (m)	Mass (tn)	Mass (tn)	Mass(tn)	Mass (tn)	Mass (tn)	Mass (tn)	Mass (tn)	Mass (tn)	Mass (tn)
0,125	10	0,25	0,15	0,12	0,11	0,09	0,08	0,08	0,07	0,07
0,281	15	0,85	0,50	0,40	0,37	0,32	0,28	0,26	0,24	0,22
0,500	20	2,00	1,19	0,94	0,88	0,76	0,66	0,61	0,57	0,53
0,781	25	3,91	2,33	1,84	1,71	1,48	1,28	1,19	1,11	1,03
1,125	30	6,76	4,02	3,17	2,96	2,55	2,22	2,06	1,92	1,78
1,531	35	10,74	6,39	5,04	4,70	4,05	3,52	3,28	3,05	2,83
2,000	40	16,02	9,53	7,52	7,01	6,04	5,26	4,89	4,55	4,23
2,531	45	22,82	13,57	10,71	9,99	8,60	7,49	6,96	6,48	6,02
3,125	50	31,30	18,62	14,70	13,70	11,80	10,27	9,55	8,88	8,26
3,781	55	41,66	24,78	19,56	18,23	15,71	13,67	12,71	11,82	11,00
4,500	60	54,08	32,17	25,40	23,67	20,39	17,75	16,51	15,35	14,28
5,281	65	68,76	40,90	32,29	30,09	25,93	22,57	20,99	19,52	18,15
6,125	70		51,09	40,33	37,58	32,38	28,19	26,21	24,38	22,67
7,031	75		62,84	49,60	46,23	39,83	34,67	32,24	29,98	27,89
8,000	80		76,26	60,20	56,10	48,34	42,07	39,13	36,39	33,84
9,031	85			72,20	67,29	57,98	50,47	46,93	43,65	40,59
10,125	90				79,88	68,82	59,91	55,71	51,81	48,19
11,281	95				93,95	80,94	70,45	65,52	60,94	56,67
12,500	100					94,40	82,18	76,42	71,07	66,10
13,781	105					109,29	95,13	88,47	82,28	76,52
15,125	110					125,65	109,38	101,72	94,60	87,98
16,531	115						124,98	116,23	108,09	100,53
18,000	120						142,00	132,06	122,81	114,22
19,531	125						160,50	149,26	138,81	129,10
21,125	130						180,54	167,90	156,15	145,22

Economical viability of 20MW W/Ts

Case study: Blades

Exponents are Learning Curve substantially <3 900.00 $y = 0.0019x^{2.6787}$ 800.00 $R^2 = 0.9991$ Learning Curve $y = 0,0007x^{2,4974}$ $R^2 = 0.9995$ 140,00 120,00 100,00 Blade Mass (tn) 80,00 60,00 40,00 40 60 80 100 120 140 20.00 Rotor Radius (m) 0.00 0 20 40 60 80 100 120 140 Rotor Radius (m)

Economical viability of 20MW W/Ts

Case study: Nacelle

3rd question: What are the technical advances required for economical viability?

Cost of energy needs to go down – Development paths

RAMS

Increased availability

- Reliability-based design
- Condition monitoring

Reduced cost of energy

- Aerodynamic improvements
- New control systems for improved wind utilisation

- ✓ Weight reduction
- New manufacturing techniques
- ✓ Improved load calculations → rationalization of safety factors

Improvements in Wind Turbine Design Rotor

SIXTH FRAMEWORK PROGRA

Improvements in Wind Turbine Design Rotor

Structural design

- Optimized internal structure
 - Going beyond the standard spar concept
- Optimized material usage
 - Hybrid construction
 - Design for structural damping
 - New materials

Improvements in Wind Turbine Design Controls

Control System

✓ Individual Pitch Control

✓ LIDAR Based control

Warsaw, April 21, 2010

UpWind

Improvements in Wind Turbine Design Drivetrain

Warsaw, April 21, 2010

SIXTH FRAMEWORK PROGRAMME

Changes in the drive-train

- ✓ Hybrid drive-trains (geared + Permanent Magnet)
- ✓ Superconducting direct-drive
- Permanent magnet directdrive

Improvements in Wind Turbine Design Support Structure

Large Wind Turbines in the future

- The details of the future design may be uncertain
- ✓ However it is obvious that...
 - Up scaling existing designs will *not* be enough
 - Integrated design for large scale should be pursued
 - New ideas and technological breakthroughs will be necessary to make very large wind turbines economically attractive
- It is certain therefore that substantial R&D and industrial effort is still needed to conquer all technical barriers!

